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Tübingen
2012



Tag der mündlichen Qualifikation 18.03.2013
Dekan Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter Prof. Dr. Bernhard Schölkopf
2. Berichterstatter Prof. Dr. Hendrik Lensch



Summary

Currently, most photographs are taken with digital cameras. Improvements in chip tech-
nologies have made possible the integration of digital cameras into other devices, such as
mobile phones. This in turn has caused an explosion in the number of digital photographs
taken each day. Unfortunately, all digital photographs contain an undesirable component
commonly referred to as noise. Noise arises for a number of reasons. For example, photon
shot noise is due to the discrete nature of light, and dark-current noise is due to the thermal
energy of a camera’s sensor. Image denoising is the problem of finding a clean image, given
a noisy one. Using a denoising method becomes necessary when modifying the image ac-
quisition process in such a way as to reduce the noise is not an option. This thesis presents
three novel contributions to the field of image denoising.

Improving existing approaches using a multi-scale meta-procedure. Most denoising al-
gorithms focus on recovering high-frequencies. However, for high noise levels it is also
important to recover low-frequencies. We present a multi-scale meta-procedure that applies
existing denoising algorithms across different scales and combines the resulting images into
a single denoised image. We show that our method can improve the results achieved by
many denoising algorithms.

Astronomical image denoising with a pixel-specific noise model. For digital photographs
of astronomical objects, where exposure times are long, the dark-current noise is a significant
source of noise. Usually, denoising methods assume additive white Gaussian noise, with
equal variance for each pixel. However, dark-current noise has different properties for every
pixel. We use a pixel-specific noise model to handle dark-current noise, as well as an image
prior adapted to astronomical images. Our method is shown to perform well in a laboratory
environment, and produces visually appealing results in a real-world setting.

Image denoising using multi-layer perceptrons. Many of the best-performing denoising
methods rely on a cleverly engineered algorithm. In contrast, we take a learning approach to
denoising and train a multi-layer perceptron to denoise image patches. Using this approach,
we outperform the previous state-of-the-art. Our approach also achieves results that are
superior to one type of theoretical bound and goes a large way toward closing the gap
with a second type of theoretical bound. Furthermore, we achieve outstanding results on
other types of noise, including JPEG-artifacts and Poisson noise. Also, we show that multi-
layer perceptrons can be used to combine the results of several denoising algorithms. This
approach often yields better results than the best method in the combination. We discuss
in detail which trade-offs have to be considered during the training procedure. We are also
able to make observations regarding the functioning principle of multi-layer perceptrons for
image denoising.

Keywords: Image denoising, multi-scale, meta-procedure, astronomical image denoising,
multi-layer perceptrons, machine learning, JPEG-artifacts, Poisson noise.
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Zusammenfassung

Heutzutage werden die meisten fotographischen Bilder mit Digitalkameras aufgenommen.
Verfeinerungen der Chip Technologien haben ermöglicht, dass Digitalkameras in andere
Geräte so wie Mobiltelefone integriert werden. Dies wiederum hat zu einer Explosion in der
Anzahl der täglich aufgenommenen Digitalfotos geführt. Leider enthalten alle Digitalfotos
eine unerwünschte Komponente, nämlich das Rauschen. Bildentrauschung ist das Problem,
ein sauberes Bild zu finden, wenn ein rauschiges gegeben ist. Eine Bildentrauschungsmeth-
ode zu verwenden ist dann nötig, wenn es nicht möglich ist, das Bildaufnahmeverfahren
so zu verändern, dass weniger Rauschen entsteht. Diese Dissertation präsentiert drei neue
Beiträge zu dem Feld der Bildentrauschung.

Verbesserung existierender Methoden durch ein multiskalen Metaverfahren: Die meis-
ten Entrauschungsverfahren setzen den Schwerpunkt auf das Wiederherstellen hoher Fre-
quenzen. Allerdings ist es bei starkem Rauschen auch wichtig, niedrigere Frequenzen zu
beachten. Wir präsentieren ein multiskalen Metaverfahren, welches existierende Entrau-
schungsverfahren auf mehreren Skalen anwendet und die jeweiligen Ergebnisse wieder in
ein entrauschtes Bild kombiniert. Wir zeigen, dass unser Verfahren die Ergebnisse vieler
Entrauschungsverfahren verbessern kann.

Entrauschen astronomischer Bilder durch ein pixel-spezifisches Modell des Rauschens:
In Digitalbildern von astronomischen Objekten, in welchen die Belichtungszeiten lang sind,
ist das Dunkelstromrauschen eine wichtige Quelle von Rauschen. Normalerweise nehmen
Entrauschungsverfahren additives, weißes Rauschen, mit gleicher Varianz für jeden Pixel
an. Allerdings hat Dunkelstromrauschen andere Eigenschaften für jeden Pixel. Wir be-
nutzen ein pixel-spezifisches Modell des Rauschens sowie eine a priori Wahrscheinlichkeit
für Bilder, welche an astronomische Bilder angepasst ist. Wir zeigen, dass unsere Methode in
einem Laboraufbau gut funktioniert und mit echten Bildern astronomischer Objekte visuell
ansprechende Ergebnisse liefert.

Entrauschen durch mehrlagige Perzeptronen: Viele der am besten funkionierenden Ent-
rauschungsverfahren verlassen sich auf ausgeklügelt konstruierte Algorithmen. Im Gegensatz
dazu benutzen wir einen auf Lernen basierten Ansatz und trainieren mehrlagige Perzeptro-
nen darauf, kleine Bildstücke zu entrauschen. Mit diesem Ansatz übertreffen wir die Ergeb-
nisse des neuesten Stand der Technik. Unser Ansatz erreicht Ergebnisse, die einer Klasse
theoretischer Grenzen überlegen sind und macht große Schritte, um eine zweite Klasse Gren-
zen zu erreichen. Außerdem erzielen wir ausgezeichnete Ergebenisse auf anderen Arten von
Rauschen, einschließlich JPEG Artefakte und Poisson Rauschen. Wir zeigen auch, dass
mehrlagige Perzeptronen in der Lage sind, die Ergebenisse anderer Entrauschungsverfahren
zu kombinieren. Dieser Ansatz liefert oft Ergebnisse, die besser als das beste Ergebnis in der
Kombination sind. Wir diskutieren im Detail, welche Kompromisse in der Trainingsproze-
dur eingegangen werden müssen. Wir sind auch in der Lage, Beobachtungen bezüglich der
Funkionsweise von mehrlagigen Perzeptronen für Bildentrauschung zu machen.

5



6



Acknowledgements

I am particularly grateful to Prof. Dr. Bernhard Schölkopf for giving me the opportunity
to work in his lab and supporting me in many ways. Special thanks go to Dr. Stefan
Harmeling for his supervision and his help, as well as many interesting discussions. Also, I
am deeply indebted toward Prof. Dr. Hendrik Lensch, who immediately agreed to become
my “Doktorvater” and provided invaluable help for my dissertation.

I would also like to thank my co-author and office mate Christian Schuler for working
with me and for incredibly constructive discussions. Great thanks to Prof. Dr. Bernhard
Schölkopf, Dr. Stefan Harmeling and Christian Schuler for letting me base chapters of my
thesis on joint publications. I would also like to thank my other office mates Paul Joubert,
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Nomenclature

AWG Additive white Gaussian

AWGN Additive white Gaussian noise

BLS-GSM Bayesian least squares, Gaussian scale mixture (a denoising algorithm)

BM3D Block-matching and 3D-filtering (a denoising algorithm)

CT Computed tomography

dB decibel

EPLL Expected patch log-likelihood (a denoising algorithm)

FoE Fields of Experts

GSM Gaussian scale mixture

MLP Multi-layer perceptron

MRI Magnetic resonance imaging

MS- Multi-scale

NL-means Non-local means (a denoising algorithm)

NLSC Non-local sparse coding (a denoising algorithm)

PET Positron-emission tomography

PSNR Peak signal-to-noise ratio

RMSE Root mean squared error

SAR Synthetic aperture radar

SNR Signal-to-noise ratio

SSIM Structural similarity index

TV Total variation
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1

Introduction

Chapter abstract This chapter defines the problem of image denoising and describes set-
tings in which image denoising is important. Also discussed are various measures to evaluate
image denoising results. Finally, this chapter summarizes the contributions made by this
thesis.
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noisy = clean + noise

Figure 1.1: A noisy image is assumed to be the sum of an underlying clean image and noise.

1.1 Problem definition: What is image denoising?

Image denoising is the problem of finding a clean image, given a noisy one. In most cases,
it is assumed that the noisy image is the sum of an underlying clean image and a noise
component, see Figure 1.1. Hence image denoising is a decomposition problem: The task
is to decompose a noisy image into a clean image and a noise component. Since an infinite
number of such decompositions exist, one is interested in finding a plausible clean image,
given a noisy one. The notion of plausibility is not clearly defined, but the idea is that the
denoised image should look like an image, whereas the noise component should look noisy.
The notion of plausibility therefore involves prior knowledge: One knows something about
images and about the noise. Without prior knowledge, image denoising would be impossible.

noisy image

clean image
denoised image without new artifacts

denoised image with new artifacts

Figure 1.2: Two-dimensional illustration of the denoising problem. The two denoised images
have the same `2-distance to the clean image, but only the denoised image lying on the path
between the noisy image and the clean image contains no new artifacts.

One can think of an image as a point lying in a high-dimensional space. Hence, image
denoising involves moving from one point in a high-dimensional space (the noisy image), to
a different point in the same space (the clean image) which is unknown a priori. Usually, it
is impossible to find the clean image exactly. One is therefore interested in finding an image
that is close to the clean image. We discuss different measures of closeness in Section 1.3. In
Figure 1.2, the denoising problem is illustrated using the `2-norm as a measure of closeness.
In the figure, each point represents an image. All the images lying on the circle around
the clean image have the same `2-distance to the clean image. However, some images on
the circle are more desirable than others: The image lying on the straight line between the
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noisy image and clean image is the most desirable because it contains no new artifacts (i.e.
no artifacts that are not contained in the noisy image). This is due to the fact that the
noise is assumed to be additive. All other points on the circle contain some new artifacts.
Usually, it is impossible to find a point lying exactly on the line between the noisy image and
clean image. Hence, denoised images almost invariably contain artifacts not contained in
the noisy image. During denoising, one ideally seeks to introduce artifacts that are the least
visually annoying. However, it is not clear how to define a measure or “visual annoyance”,
see Section 1.3.

1.2 Why is denoising important? Sources and types of noise

During any physical measurement, it is likely that the signal acquisition process is corrupted
by some amount of noise. The sources and types of noise depend on the physical measure-
ment. Noise often comes from a source that is different from the one to be measured (e.g .
read-out noise in digital cameras), but sometimes is due to the measurement process itself
(e.g . photon shot noise). Sometimes, noise might be due to the mathematical manipulation
of a signal, as is the case in image deconvolution or image compression. Often, a measure-
ment is corrupted by several sources of noise and it is usually difficult to fully characterize
all of them. In all cases, noise is the undesirable part of the signal. Ideally, one seeks to
reduce noise by manipulating the signal acquisition process, but when such a modification
is impossible, denoising algorithms are required.

The characteristics of the noise depend on the signal acquisition process. Images can be
acquired in a number of ways, including, but not limited to: Digital and analog cameras of
various kinds (e.g . for visible or infra-red light), magnetic resonance imaging (MRI), com-
puted tomography (CT), positron-emission tomography (PET), ultrasonography, electron
microscopy and radar imagery such as synthetic aperture radar (SAR). The following is a
list of possible types of noise.

Additive white Gaussian noise: In image denoising, the most common setting is to use
black-and-white images corrupted with additive white Gaussian (AWG) noise, see e.g . [94,
1, 25]. For each pixel, a random value drawn from a normal distribution is added to the
clean pixel value. The distribution is the same for every pixel (i.e. the mean and variance
are the same) and the noise samples are drawn independently of each other. The read-out
(or “amplifier”) noise of digital cameras is often approximately AWG. An example of an
image corrupted with AWG noise is shown in Figure 1.1.

Photon shot noise: Images are inevitably affected by photon shot noise. This is due to
the discrete nature of light: During a given exposure time, only a finite number of photons
reach the imaging sensor. The number of photons reaching the sensor follows a Poisson
distribution. The standard deviation of a Poisson distribution is equal to the square root of
its expected value. The signal-to-noise ratio (SNR) of a pixel x, defined as

SNR =
E{x}√
Var{x}

(1.1)

is therefore low when the expected number of photons is low:

SNR =
E{x}√
E{x}

(1.2)

=
√

E{x}. (1.3)

Photon shot noise if therefore especially noticeable in low light conditions (so-called photon-
limited imaging [71, 76]), whereas it is barely noticeable in cases where many photons are
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captured. When the mean is high (e.g . E{x} ≥ 10), the Poisson distribution looks similar
to a Gaussian distribution with equal mean and variance. In that setting, removing Poisson
noise is similar to removing Gaussian noise, where each pixel has a variance which depends
on the pixel value of the underlying clean image. For lower mean values, the two distributions
do not look similar.

The pixel size of image sensors has become smaller with progressing technology. The
number of photons captured per pixel decreases as the area of a pixel decreases. Hence,
photon shot noise is becoming more and more of a problem [106].

Thermal noise: Thermal noise arises due to the thermal energy of a chip. Thermally
generated electrons accumulate in the chip’s wells and are indistinguishable from photo-
electrons. Thermal noise occurs even in the absence of light and is therefore sometimes
referred to as dark-current noise. This type of noise is strongly dependent on the temperate
of the sensor, but also on exposure time as well as the ISO-setting of the camera. Each pixel
can be approximately modeled as a Gaussian.

Thermal noise is an example of noise which can be reduced by modifying the signal
acquisition process: Cooling the camera’s sensor reduces thermal noise. This type of noise
is studied in more detail in Chapter 4.

Salt-and-pepper noise: Salt-and-pepper noise is a type of noise where the image contains
a certain percentage of noisy pixels, where the noisy pixels are randomly either completely
dark (pixel value zero) or saturated (highest possible pixel value). The value of the noisy
pixels is therefore completely uncorrelated with the value of the same pixels in the clean
image, which is different from e.g . AWG or Poisson noise. Salt-and-pepper noise can arise
due to errors during transmission of an image.

Compression artifacts: Digital images are usually stored in a compressed format such
as JPEG or JPEG-2000. The compression algorithm gives rise to artifacts, which can be
considered a type of noise. The JPEG-algorithm is the most commonly used compression al-
gorithm and causes “blocking” artifacts. In addition, information is lost due to compression.
The noise can be said to be somehow non-linearly related to the clean image.

Rician noise: Magnetic resonance images are usually corrupted by Rician noise [46]. In
MRI data, each pixel consists of a complex number. For viewing MRI data, the absolute
value of each complex number is taken. If the real and imaginary parts of the complex
number are Gaussian-distributed and independent (with the same variance), the absolute
value is Rician-distributed. Similarly to the Poisson distribution, the Rician distribution
can be well approximated with a Gaussian distribution, for higher mean values.

Colored noise: Colored noise refers to the situation where neighboring noise samples are
correlated. Colored noise frequently occurs in electronics, where various shapes of the power
spectral density are given names (e.g . pink and brown noise). In images, colored noise
can arise during deconvolution, see Figure 1.3. Deconvolution is the process of finding a
sharp image, given a blurry one. Colored noise can occur during deconvolution because a
process called direct deconvolution [55] (a regularized inversion of the blur in Fourier domain)
amplifies and colors the noise present in the input blurry image. Colored noise during
deconvolution is an example of noise that occurs due to a mathematical manipulation of the
signal: The noise is usually weak prior to direct deconvolution, but stronger thereafter.

Other noise: The types of noise possibly corrupting images are too numerous to list in this
work. We are mostly interested in digital images, but images taken with analog cameras
are also affected by noise, such as film grain. Physical degradation of old photographs
such as daguerreotypes also causes a variety of artifacts, such as scratches, see Figure 1.4.
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y = x ∗ v + n
↓ ↓ ↓

F−1(R�F(y)) = F−1(R�F(x)�F(v)) + F−1(R�F(n))
z = xcorrupted + ncolored

Figure 1.3: Image deconvolution can be addressed as a denoising problem (figure taken
from [107], with permission of co-authors). The blurry image y contains a small amount
of AWG noise. Performing a direct deconvolution [55] (multiplying with R, a regularized
inverse of the blurring transformation, in Fourier domain) sharpens the image, but also
(i) amplifies and colors the noise (see ncolored) and (ii) corrupts the image content (see
xcorrupted). Therefore, image deconvolution can be performed by removing the noise in the
image z. Methods such as [26, 27, 47] denoise z by attempting to remove ncolored (but ignore
the noise in xcorrupted). In [107], both ncolored and xcorrupted are treated.

Figure 1.4: Examples of noisy analog images, in this case of daguerreotypes of Andrew
Jackson (left), taken in 1844 or 1845 and of Shimazu Nariakira (right), taken in 1857.
Source: Wikimedia.

Such scratches are different from the types of noise we have discussed so far in that they
have large-scale structure: A single scratch can potentially run across a whole image. Such
large-scale structures can also occur in digital images: Some sensors are affected by row-
or column-noise. In such cases, the noise samples within a row (or column) might be the
same, but the noise samples between rows (or columns) different. In this thesis, we will only
consider AWG noise, Poisson noise, thermal noise, salt-and-pepper noise, JPEG artifacts,
as well as a “stripe” noise, resembling row or column noise.

Summary: Sources and types of noise are numerous and diverse and occur in almost all
imaging settings. When designing a denoising algorithm, prior knowledge about the noise
has to be adapted depending on the type of noise. The situation generally becomes more
difficult when several types of noise affect the same image.

19



ground truth noisy denoised with
“replaceWithMan”

PSNR: 14.16 dB PSNR: 10.69 dB
SSIM [123]: 0.37 SSIM [123]: 0.18

MS-SSIM [125]: 0.61 MS-SSIM [125]: 0.13
IW-SSIM [124]: 0.62 IW-SSIM [124]: 0.05

IW-PSNR [124]: 21.18dB IW-PSNR [124]: 9.50dB
VIF [109]: 0.05 VIF [109]: 0.01

Figure 1.5: Applying the hypothetical denoising algorithm “replaceWithMan” creates a
denoised image that follows the statistics of natural images (and is therefore visually ap-
pealing), yet is unrelated to the underlying true image: The `2-distance between the images
is high (and therefore the PSNR is small).

1.3 Evaluating denoising results: Measures of image quality

After denoising an image, we would like to know: How good is the denoising result? In
asking this question, we are actually asking two questions: (i) How close (e.g . in terms of
`2-norm) is the denoising result to the underlying true (clean) image? And (ii) How good
does the denoised image look? One could imagine extremes in both scenarios. Let us a
consider a hypothetical denoising algorithm called replaceWithMan that replaces the noisy
input image with a different (non-noisy) image, see Figure 1.5. This algorithm produces
an image that looks visually appealing, yet is unrelated to the true image underlying the
noisy input image (i.e. the `2-distance to the true image is high). A different algorithm,
called denoiseWithBadFace might produce a result that is close to the underlying true
image (again in terms of `2-norm), but be bad at denoising faces, see Figure 1.6. The
result produced by this algorithm is close to the underlying true image, yet is not visually
appealing. Both scenarios are undesirable. But which trade-off is the most desirable?

Finding a good answer to this question is important in image denoising, because denoising
almost inevitably introduces new artifacts. Hence it is important to know which artifacts are
the most or least disturbing. A possible solution to this problem would be to rely on human
(subjective) evaluation of the image quality. However, this solution is too inconvenient for
many applications. Hence, one is interested in automatic image quality assessment and in
particular in objective image quality metrics that correlate with subjective image quality.

Image quality metrics can be divided into three categories: (i) Full-reference, (ii) no-
reference, and (iii) reduced reference metrics. Full-reference metrics assume that the true
underlying image is available in order to compute a measure, whereas no-reference metrics
perform a “blind” quality assessment: The true underlying image is not available. Reduced
reference metrics lie somewhere in between the two previous scenarios and assume that the
true image is partially known.

PSNR: The most commonly used metric for image quality assessment is the peak signal-
to-noise ration (PSNR), which is a full-reference metric and calculated between two images
x and y as follows:

PSNR = 20 log10

(
max

RMSE(x,y)

)
, (1.4)
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ground truth noisy denoised with
“denoiseWithBadFace”

PSNR: 14.16 dB PSNR: 26.09 dB
SSIM [123]: 0.37 SSIM [123]: 0.94

MS-SSIM [125]: 0.61 MS-SSIM [125]: 0.95
IW-SSIM [124]: 0.62 IW-SSIM [124]: 0.90

IW-PSNR [124]: 21.18dB IW-PSNR [124]: 20.41dB
VIF [109]: 0.05 VIF [109]: 0.84

Figure 1.6: Applying the hypothetical denoising algorithm “denoiseWithBadFace” creates
a denoised image that is close to the underlying true image in terms of `2-distance (therefore
the PSNR is high), but the result is visually not appealing: The artifacts in the middle of
the denoised image do not look like a natural image.

where max refers to the maximum possible pixel value of the images (255 for 8-bit images).

RMSE(x,y) refers to the root mean squared error: RMSE =
√

1
N

∑N
i=1(xi − yi)2, where

the index i iterates over all pixels in the images. Hence, the PSNR is monotonically related
to the `2-distance between two images. The unit used for the PSNR is decibel (dB), where
a higher dB value indicates higher image quality in terms of RMSE (i.e. lower RMSE, or
lower `2-distance). The PSNR is perhaps the simplest of allimage quality metrics. Still,
higher dB values tend to correlate with higher visual similarity between the two images x
and y. However, higher dB values do not always indicate higher visual similarity, which is
why extensive effort has been put into finding alternative metrics.

Other image quality metrics: Some image quality metrics attempt to exploit known char-
acteristics of the human visual system. The structural similarity index (SSIM) [123] is a full-
reference image quality metric which separates the task of similarity measurement into three
components: (i) luminance, (ii) contrast, and (iii) structure. Among other things, the SSIM
takes into account that the human visual system is sensitive to relative changes in luminance,
rather than to absolute changes in luminance. The SSIM is a measure that is smaller or equal
to 1. The measure is equal to 1 only in case the two images being compared are identical.
Variants of the SSIM include a multi-scale extension (MS-SSIM [125]) and the information-
content weighted SSIM (IW-SSIM [124]). Other full-reference image quality metrics include
the information-content weighted PSNR (IW-PSNR [124]), the information fidelity crite-
rion (IFC [110]) and the visual image information (VIF [109]). No-reference image quality
metrics include DIIVINE [85], CBIQ [130], LBIQ [116], BLIINDS [104], BRISQUE [83],
and BIQI [84]. These measures capture deviations from the expected statistics of natural
images, where these deviations can be measured in different ways. For example, BLIINDS
measures deviations from the expected histogram of certain features in DCT-domain. BIQI
measures deviations from the expected distribution of wavelet coefficients in a multi-scale
and multi-orientation decomposition.

Unfortunately, it is not clear which image quality assessment approach is the best, even
in the full-reference setting. In the no-reference setting, this becomes even less clear. The
PSNR is still the de facto standard in image denoising, though the SSIM is also sometimes
used.
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2

A brief summary of some existing denoising

methods

Chapter abstract The following exposition is meant to be a brief overview of some existing
denoising methods. Denoising is a long-standing problem, with techniques too numerous to
list in this exposition. While not complete, the list of approaches we present here is intended
to give the reader a feeling for the diversity of existing methods. A more complete, though
also not exhaustive exposition of denoising techniques can be found in [62]. At the end of
this chapter, we propose a hierarchical classification of the various approaches.

23



wiener2

anisotropic diffusion total variation

FoE
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1980 1985 1990 1995 2000 2005 2010

Figure 2.1: A timeline containing the date of introduction of a selection of denoising algo-
rithms. The height of the vertical lines are proportional to the PSNR of the denoised image
obtained by each algorithm on image “Lena”, corrupted with AWG noise, σ = 50. The
ranking of the different algorithms might be different on other images and noise levels. The
methods MLP and E-MLP are contributions of this thesis and are described in Chapter 5.

Lena, clean noisy, PSNR: 14.16dB

Figure 2.2: Test image Lena. Ground truth (left) and noisy (right), corrupted with additive
white Gaussian (AWG) noise with σ = 50.
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2.1 Linear smoothing

A relatively simple approach to image denoising is to convolve a noisy image y with a
Gaussian filter k:

x̂ = y ∗ k. (2.1)

This is a linear operation and can also be performed in Fourier domain:

X̂ = Y �K, (2.2)

where capital letters denote the Fourier transform of their counterparts (e.g . Y = F(y),
where F is the Fourier transform) and � denotes the element-wise (Hadamard) product.
The Gaussian filter k is still a Gaussian in the Fourier domain (i.e. K is also Gaussian).
The Fourier representation makes it clear that the effect of Gaussian filtering is to keep low
frequencies and to attenuate high frequencies (a Gaussian filter is a low-pass filter). This has
a denoising effect because images contain mostly low-frequency information whereas AWG
noise is spread evenly over the spectrum. Visually, images with attenuated high frequencies
look smoother, which is why filtering with a Gaussian is a form of linear smoothing.

noisy, PSNR: 14.16dB denoised, PSNR: 25.42dB

Figure 2.3: Results using Gaussian filtering with filter width σ = 1.8.

Gaussian filtering can be implemented efficiently by exploiting the fact that the filter
is separable: One first filters the image in the horizontal (or vertical) direction with a
one-dimensional Gaussian filter. The resulting image is then filtered in the vertical (or
horizontal) direction with a one-dimensional Gaussian filter. Doing so has the same effect
as a two-dimensional convolution with a two-dimensional filter.

Prior to filtering with a Gaussian filter, one has to decide on the width σ of the filter.
The optimal value depends both on the image at hand and on the strength of the noise,
where higher noise levels require larger values of σ. An example of denoising with Gaussian
filtering is shown in Figure 2.3. Linear filtering with filters other than the Gaussian are
possible, though the Gaussian is the most commonly used filter.

Gaussian filtering attenuates high frequencies of a noisy image, which has the desirable
effect of reducing the noise, but also has the undesirable effect of smoothing sharp image
image features, such as edges. A possible solution to that problem is to adapt the shape of
the filter to the image content: Different filters could be used for different parts of the image.
We will discuss bilateral filtering [117] in Section 2.6, which is a method that exploits this
idea.
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noisy, PSNR: 14.16dB denoised, PSNR: 26.22dB

Figure 2.4: Results using two passes of median filtering with filter of size 5 × 5 and 7 × 7
pixels and symmetrically extended image borders.

2.2 Median filtering

An alternative to linear smoothing is median filtering. The idea underlying median filtering
is to process an image pixel by pixel. Each pixel is replaced by the median of the value of a
set of neighboring pixels. The method can therefore also be regarded as a filtering technique,
though the filter is non-linear (and also non-separable in general).

It has often been said that median filtering is better at preserving edges than linear fil-
tering, see e.g . [18]. However, more recent work indicates that this is not the case [4]: Under
realistic assumptions, simple median filtering is no better at preserving edges than linear
filtering. Another attribute of median filtering is that it is good at removing outliers [4].
Median filtering is therefore often used to remove salt-and-pepper noise.

The shape of the window in which the median is computed is a hyper-parameter, though
a square window is the most common choice. The ideal window size depends on the image at
hand as well as the noise level. Sometimes, median filtering is applied in several passes: The
noisy image is first filtered with a median filter with a certain window size. The resulting
image is then again median-filtered with a potentially different window size. It can be
shown that this strategy can indeed better preserve edges than linear filtering [4]. We show
an example of results achieved using this approach in Figure 2.4.
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2.3 Denoising using local statistics

This section summarizes the method described by Jong-Sen Lee in 1980 [66]. This algorithm
is an early approach to digital image denoising, invented at a time when the cost of com-
putations was much higher than today. Still, the algorithm has become quite popular and
can be executed in Matlab using the wiener2 function. The algorithm can handle both
additive and multiplicative noise. We will here discuss the case of additive noise. A clean
image x is corrupted with AWG noise n, giving us a noisy image y:

y = x+ n. (2.3)

We assume that the noise is independent of the underlying image, which gives us E{n} = 0
and E{xn} = 0. No assumption is made about the distribution other than that the variance
σ2 be finite and known and that the mean is 0. This gives us E{n2} = σ2 + E{n}2 = σ2.

The method described here estimates the mean and variance of the image locally. The
assumption is that the a priori mean of a pixel is equal to the mean of the pixels surrounding
it. A further assumption is that the same holds true for the variance of a pixel. It should
be clear that these assumptions are often violated, and the paper [66] freely admits that
the validity of the assumptions is debatable. Still, these assumptions lead to a denoising
algorithm that is both simple and often effective in practice.

The algorithm therefore operates patch-wise: the mean of a pixel is estimated using the
pixels in a surrounding patch of size m × n, where m and n are hyper-parameters. Using
a similar notation as [66], we denote with x̄ the image of local mean estimates and Q will
denote the image of local variance estimates. The derivations that follow hold true for each
pixel in the image. For the mean, we have:

x̄ = E{x} = E{y − n} = E{y} − E{n} = E{y} = ȳ. (2.4)

The following useful derivation holds for the variance:

E{(y − ȳ)2} − σ2 = E{(y − ȳ)2 − n2} (2.5)

= E{y2 − 2yȳ + ȳ2 − n2} (2.6)

= E{(x+ n)2 − 2(x+ n)ȳ + ȳ2 − n2} (2.7)

= E{x2 + 2xn+ n2 − 2xȳ − 2nȳ + ȳ2 − n2} (2.8)

= E{x2 − 2xȳ + ȳ2} (2.9)

= E{(x− x̄)2} (2.10)

, Q, (2.11)

where we have exploited the independence of noise and image (E{xn} = 0 and E{nȳ} = 0).
We note that:

E{(y − ȳ)(x− ȳ)} = E{(x+ n− x̄)(x− x̄)} (2.12)

= E{x2 − xx̄+ xn− x̄n− xx̄+ x̄2} (2.13)

= E{x2 − 2xx̄+ x̄2} (2.14)

= E{(x− x̄)2}, (2.15)

where we have again made use of the independence of the noise and the image (E{xn} = 0
and E{x̄n} = 0). Our goal is to find an estimate of the true image using the following
expression:

x̂ = x̄+ β(y − x̄), (2.16)

where β is a free parameter. In other words, the denoised image is given by the local mean
estimate plus a weighted sum of the difference between the noisy image and the local mean
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estimate. If β is close to 0, the denoised image will be close to x̄, whereas if β is closer to 1,
the denoised image will be closer to the noisy image y. This formulation is reminiscent of
Wiener filtering. We will see that β will indeed take values between 0 and 1. We want to
minimize the expectation of the squared error:

min
β
L = E{(x− x̄− β(y − x̄))2}, (2.17)

which can be done by taking the derivative over β:

∂L
∂β

= E{−2(y − x̄)(x− x̄− β(y − x̄))} (2.18)

= 2E{β(y − ȳ)2 − (y − ȳ)(x− ȳ)}, (2.19)

and setting to zero:

β̂ =
E{(y − ȳ)(x− ȳ)}

E{(y − ȳ)2}
(2.20)

=
E{(x− x̄)2}
E{(y − ȳ)2}

, using 2.15 (2.21)

=
E{(x− x̄)2}

E{(x− x̄)2}+ σ2
, using 2.5 (2.22)

=
Q

Q+ σ2
, using 2.11. (2.23)

We see that β̂ is indeed guaranteed to lie between 0 and 1. If the local variance estimate
is small compared to the noise level σ, β̂ will be close to 0 and the denoised image will be
close to x̄. If the local variance estimate is large compared to the noise level σ, β̂ will be
close to 1 and the denoised image will be closer to y.

Putting everything together, we have the following expression for the denoised image:

x̂ = x̄+
(E{(y − ȳ)2} − σ2)(y − x̄)

E{(y − ȳ)2}
. (2.24)

Denoising therefore involves the computation of x̄ and E{(y − ȳ)2}. The computation of
x̄ can be done efficiently by filtering the noisy image with a filter of size m × n consisting
of only 1s. E{(y − ȳ)2} can be computed similarly by filtering the pixel-wise square of the
noisy image. A big advantage of the method is therefore its computational efficiency. Using
square windows, we found the optimal window size to be 5× 5 for the image Lena on noise
level σ = 50, see Figure 2.5. The method indeed achieves a big gain in PSNR, but the
denoised image still looks very noisy.
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noisy, PSNR: 14.16dB denoised, PSNR: 25.25dB

Figure 2.5: Results using Matlab’s wiener2 filter [66].

2.4 Total variation

The intuition behind image denoising based on total variation [101] is that noisy images
have a larger discrete image gradient than noise-free images. In other words, noisy images
look grainy, whereas clean images tend to be smooth. Hence finding an image that is
smooth according to some measure but is close to the original noisy image should yield good
denoising results.

We assume that we are given a noisy image which is the sum of an underlying true image
corrupted by AWG noise u = v+n. We are looking for a cleaner image v̂. The problem can
be formalized as a maximum a posteriori (MAP) estimation problem:

v̂ = arg max
v

p(v|u) (2.25)

= arg max
v

p(v)p(u|v) (2.26)

= arg min
v
− log p(v)− log p(u|v), (2.27)

where for Gaussian noise, we have the likelihood term

log p(u|v) =
1

2σ2

∑
i,j

(ui,j − vi,j)2, (2.28)

where the indices i and j run over all positions in the image. The image prior is given by
− log p(v) = µ||v||TV, where µ controls the regularization strength. Different choices for
||v||TV are possible, but most commonly, the following is used

||v||TV =
∑
i,j

√
(∇xv)2i,j + (∇yv)2i,j + ε, (2.29)

where ∇xv and ∇yv refer to the discrete horizontal and vertical image derivatives, respec-
tively. One should use a value for ε that is slightly larger than zero to ensure differentiability
at 0. The problem is convex and can be solved using gradient descent steps:

v(t+1) = v(t) + η

[
∂||v||TV

∂v
− λ(u− v)

]
, (2.30)
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where v(t=0) = u. The parameter λ controls the trade-off between the prior and the like-
lihood terms and should be chosen according to the level of noise. One usually iterates
until the change between successive updates is deemed small enough. The discrete deriva-
tives in ||v||TV can be computed in a number of ways, where the choice of how they are

computed affects the optimization procedure through the computation of ∂||v||TV

∂v . Two
possible choices are the one-sided difference (∇xv)2 = (∇+

x v)2 and the central difference:

(∇xv)2 = (
∇+
x v+∇

−
x v

2 )2, where ∇+
x and ∇−x refer to the difference in pixel value between

reference pixels and pixels to the right or to the left, respectively.
A disadvantage of the optimization procedure through gradient descent steps is that it

is rather slow, which is why considerable effort has been put into finding faster alternatives.
An overview of different optimization procedures is given in [41]. To list just a few: [86]
proposes a Newton-based method, [19] proposes a duality-based method. Other methods
are based on graph-cuts [20] or on operator splitting [122].

noisy, PSNR: 14.16dB denoised, PSNR: 26.82dB

Figure 2.6: Result using total variation denoising [101]. The “cartoon”-like appearance of
the denoised image is typical for total variance denoising.

Another disadvantage of total variation denoising is its tendency to produce areas that
are overly smooth, particularly in textured regions. An example image is shown in Figure 2.6,
showing the typical cartoon-like appearance of the denoised image due to overly smoothed
regions that should contain texture. A modification of total variation denoising [43] addresses
this issue by effectively making the trade-off parameter λ space-varying. Total variation
denoising can also be modified to handle other kinds of noise, such as Rician noise [42].

30



2.5 Anisotropic diffusion

Anisotropic diffusion [90, 40] is an iterative procedure based on smoothing that can be used
for image denoising. The method attempts to fulfill the following requirements: (i) Object
boundaries should be preserved, and (ii) noise should be efficiently removed in homogeneous
(flat) regions. Images can be considered to consist of regions (e.g . one region per object),
in which case the goal of anisotropic diffusion is to preferentially perform smoothing within
regions rather than between regions. The name of the procedure comes from the fact that
it bears mathematical similarities to heat diffusion equations and from the fact that the
diffusion or smoothing process is not performed uniformly over the whole image: Smoothing
adapts to the image content. Anisotropic diffusion can therefore be seen as an improvement
over isotropic Gaussian smoothing or blurring described in Section 2.1.

The procedure begins with a noisy image I. At each iteration t of the procedure, the
current denoised estimate is updated using the previous estimate:

It+1 = It + λG, (2.31)

where It=0 is the original noisy image. The scalar λ defines the step-size and G is of the
same size as I and defines the updates at the current iteration. The procedure has to be
stopped after a certain number of iterations: After a large number of iterations, the image
becomes too smooth. The update G relies on the discrete gradients of the image:

G = ΦN (∇NI) + ΦS(∇SI) + ΦE(∇EI) + ΦW (∇W I), (2.32)

where the flow functions Φ• are defined as follows

ΦN (∇NI) = c(∇NI)�∇NI (2.33)

ΦS(∇SI) = c(∇SI)�∇SI (2.34)

ΦE(∇EI) = c(∇EI)�∇EI (2.35)

ΦW (∇W I) = c(∇W I)�∇W I. (2.36)

The symbol � refers to the Hadamard (element-wise) product. ∇•I refers to the discrete
gradients along four directions:

∇NI = Ii−1,j − Ii,j (2.37)

∇SI = Ii+1,j − Ii,j (2.38)

∇EI = Ii,j+1 − Ii,j (2.39)

∇W I = Ii,j−1 − Ii,j , (2.40)

where we have assumed a grid size of 1. ∇•I can be computed quickly, through filtering
with a 3 × 3 filter. Sometimes the diagonals are also included, giving eight filtered images
instead of four.

The diffusion function (sometimes also called conduction coefficient) c(∇I) depends on
the magnitude of the gradient of the image intensity. It is monotonically decreasing. Two
choices for c(∇I) are proposed:

c(∇I) = (1 +

(
∇I
κ

)2

)−1, (2.41)

or:

c(∇I) = e−(
∇I
κ )2 , (2.42)

see Figure 2.7. The effect of both diffusion functions is the following: When the discrete
image gradient ∇I is large, the response of c(∇I) is small. However, when the discrete
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Figure 2.7: Two common choices for c(∇I), for κ = 1. Φ(∇I) has a maximum at either
∇I =

√
κ
2 or ∇I = κ, depending on the choice of the diffusion function c.

noisy, PSNR: 14.16dB denoised, PSNR: 26.75dB

Figure 2.8: Results using anisotropic diffusion. We used κ = 40, 12 iterations and c(∇I) =
(1 + (∇Iκ )2)−1

image gradient is small, c(∇I) is large. This has the effect that the flow function is small
for very small image gradients and for large image gradients, with a maximum flow lying
somewhere in between. It can be shown [126] that this has the desirable effect of blurring
small fluctuations and sharpening edges.

The following hyper-parameters affect the results of anisotropic diffusion: The value of
λ, the choice of the diffusion function c(∇I) as well as the value of its hyper-parameter κ
and the number of iterations. The optimal choice of these hyper-parameters depends both
on the image to be denoised and on the strength of the noise contained in the image. The
results shown in Figure 2.8 were achieved by tuning the hyper-parameters on the image itself
(the hyper-parameters are therefore optimal for that image).

One can see that anisotropic diffusion is straightforward to implement and is computa-
tionally not very expensive. Still, the results are quite satisfactory. In addition, there exist
directed versions of anisotropic diffusion with additional direction information that might
further improve on these results.
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2.6 Bilateral Filtering

Bilateral filtering [5, 117], like anisotropic diffusion, attempts to smooth an image while
preserving edges. A difference between the two approaches is that bilateral filtering is non-
iterative. The idea underlying bilateral filtering is to non-linearly combine nearby image
values. The pixels to be combined are chosen not only based on their geometric proximity,
as is usual for filtering methods, but also based on their photometric similarity. Bilateral
filtering can therefore be seen as a blend of two approaches: Domain-filtering and range-
filtering.

noisy, PSNR: 14.16dB denoised, PSNR: 25.37dB

Figure 2.9: Results using bilateral filtering. We used σd = 3.91 and σr = 0.69.

Domain-filtering refers to classic filtering where pixels that are geometrically close-by
are filtered together. Filtering an image with a Gaussian blur is an example of domain-
filtering. Domain-filtering can be intuitively justified by the fact that images usually vary
slowly over space (i.e. low frequencies dominate), whereas the noise is not correlated over
space. Domain-filtering then has the effect of attenuating the noise while preserving the
signal. However, the assumption that images vary slowly fails at image edges.

Range-filtering refers to filtering all pixels within an image that are similar in appearance.
It can be shown [117] that range-filtering merely changes the gray map of the image (i.e. it
changes the color histogram). More precisely, it compresses unimodal histograms (i.e. the
resulting image has fewer different gray values), making images appear more “cartoon-like”.

However, combining range filtering with domain filtering can result in more interesting
effects, including denoising. Figure 2.10 shows the difference between domain-filtering and
bilateral filtering. Bilateral filtering ensures that edges are preserved, which is not the case
for pure domain-filtering.

In keeping with the notation used in [117], we denote with f the original (noisy) image.
The pixel-value of an image f at position x is given by f(x). The output image is obtained
by filtering:

h(x) = k−1(x)

∫ ∞
−∞

∫ ∞
−∞

f(ξ)c(ξ, x)s(f(ξ), f(x))dξ. (2.43)

Both x and ξ are 2D-coordinates, explaining the double integral. The normalization k(x) is
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Figure 2.10: The noisy image (a) is to be denoised. Using a Gaussian filter (b) would not
preserve the edge in the image. However, combining the Gaussian filter with a measure of
pixel similarity can alleviate the problem. The filter in (c) is obtained using the Gaussian
in image (b) for c(ξ, x) and a Gaussian with σr = 0.5 for s(f(ξ), f(x)). The position x of
the center pixel is two pixels to the right of the edge in (a).

given by:

k(x) =

∫ ∞
−∞

∫ ∞
−∞

c(ξ, x)s(f(ξ), f(x))dξ. (2.44)

The function c(ξ, x) defines the domain-filtering component and is therefore a measure of
pixel closeness. A typical choice is the Gaussian:

c(ξ, x) = e
− 1

2

(
d(ξ,x)
σd

)2

, (2.45)

where d(ξ, x) = ||ξ−x||2 is the Euclidean distance between ξ and x. The function s(f(ξ), f(x))
is a measure of pixel similarity and therefore defined the range-filtering component of bilat-
eral filtering. A typical choice for s(f(ξ), f(x)) is to also use a Gaussian:

s(f(ξ), x) = e−
1
2 ( δ(f(ξ),f(x))σr

)
2

, (2.46)

where δ(f(ξ), f(x)) = ||f(ξ)− f(x)||2
Setting c(ξ, x) = 1 gives pure range-filtering whereas setting s(f(ξ), f(x)) = 1 gives

pure domain-filtering. It can therefore be seen that bilateral filtering is a combination of
domain-filtering and range-filtering.

Bilateral filtering has two hyper-parameters σd (the geometric spread) and σr (the pho-
tometric spread). The optimal value of the hyper-parameters is image-dependent and fur-
thermore depends on the level of noise. However, it is not clear what the relation between
the strength of the noise and the optimal hyper-parameter values is. The results shown
in Figure 2.9 were obtained by optimizing the hyper-parameters on the image itself. The
denoising effect is not very impressive, but the method is conceptually quite simple and is
also computationally not too intensive.
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2.7 Fields of Experts

The Fields of Experts framework [99, 100] is a model for image priors based on Markov
random fields (MRFs). The prior probability of an image is modeled using a random field
with overlapping cliques, whose potentials are represented as Products of Experts [50]. The
framework is applicable to multiple low-level vision tasks, such as denoising and inpainting.
Usually, extended cliques are used (3×3 or 5× 5), so that image statistics beyond pairwise
neighborhoods are captured. All parameters of the model are learned, where learning is
performed with contrastive divergence [51] using a dataset of natural images. Denoising is
achieved using a simple iterative gradient-descent approach on a negative log-likelihood term.
Results are competitive with some other denoising methods even though the framework is
versatile and can be applied to other problems.

Using a Products of Experts to model the prior probability of an image patch x can be
done as follows

p(x) =
1

Z(Θ)

N∏
i=1

φi(J
T
i x;αi), Θ = {θ1, . . . , θN}, (2.47)

where θi = {αi,Ji}, N is the number of filters, and Z(Θ) is a partition function. The term
JT
i x is the response of a patch x to a filter Ji. The functions φi are referred to as experts.

Using

φi(J
T
i x;αi) =

(
1 +

1

2
(JT
i x)2

)−αi
(2.48)

gives us a product of t-distribution (PoT) model. The use of filters resembling the t-
distribution is justified by the observation that the responses of linear filters to natural
image patches resemble the t-distribution. The probability density p(x) is often written in
so-called Gibbs form:

p(x) =
1

Z(Θ)
exp(−EPoE(x,Θ)), (2.49)

with

EPoE(x,Θ) = −
N∑
i=1

log φi(J
T
i x;αi). (2.50)

Learning involves finding the parameter values for both the αis and the filters Ji. This model
learns a prior distribution for small image patches. However, we are interested in modeling
the distribution of entire images. The probability density of the full image is expressed using
a Fields of Experts model as

EFoE(x,Θ) = −
∑
k

N∑
i=1

log φi(J
T
i x(k);αi), (2.51)

where x(k) refers to an image patch (or clique) centered at position k. It is assumed that
the potentials are the same for all image patches: The MRF is therefore homogeneous. The
difference between the Products of Experts model and the Fields of Experts model is that
in the Fields of Experts model, one takes the product over all overlapping neighborhoods k
(or equivalently: The sum over all neighborhoods is taken, using the Gibbs notation).

Training: Training is performed by minimizing the Kullback-Leibler divergence between
the model and the data distribution. This makes sure that the model distribution is as close
as possible to the data distribution and is equivalent to maximizing the likelihood of the FoE
model. Training therefore involves repeatedly drawing samples from p(x), which is time-
consuming even with efficient sampling techniques. Training is made more efficient using
contrastive divergence [51], where the sampling procedure is stopped after a small number
of steps. The size of the training images has to be chosen carefully: Choosing very large
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Figure 2.11: The FoE filters learned by contrastive divergence, as in [99]. The filters lack a
clear interpretation.

images would make the training procedure very time-consuming, whereas choosing images
that are no larger than the clique size would not model spatial dependencies of neighboring
cliques (which is equivalent to the PoE model). A typical trade-off is to use training images
that are three times as large as the clique size.

One also needs to decide on the number of filters N . In principle, a N can be chosen
to be much smaller or much larger than the number of pixels in a clique. In [99], N = 24
filters is chosen for cliques of size 5× 5. Usually, the filters learned in this way lack a clear
interpretation, see Figure 2.11.

noisy, PSNR: 14.16dB denoised, PSNR: 27.29dB

Figure 2.12: Results using Fields of Experts [100] with early stopping.

Denoising: Denoising can be performed using a maximum a posteriori (MAP) estimate.
Given an observed noisy image y assumed to be corrupted with AWG noise n: y = x + n,
we want to maximize the posterior probability p(x|y) ∝ p(y|x) · p(x). The likelihood term
is written as

p(y|x) ∝
∏
j

(
− 1

2σ2
(yj − xj)2

)
, (2.52)

where j goes over all pixels in an image and σ refers to the standard deviation of the
AWG noise. Denoising is performed using gradient ascent on the logarithm of the posterior
probability distribution, giving rise to the following update rule:

x(t+1) = x(t) + η

[
N∑
i=1

J−i ∗ ψi(Ji ∗ x(t)) +
λ

σ2
(y − x(t))

]
, (2.53)
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where ψi(y) = ∂
∂y log φi(y;αi) , J−i refers to the filter Ji mirrored around its center pixel and

∗ refers to a convolution. The parameter η defines a step size and λ controls the trade-off
between the prior and the likelihood. The optimal value of λ depends on the noise level
σ. Good values can be found using cross-validation. In [99], 2500 iterations of gradient
descent are performed. We found that we could obtain slightly better results by adapting
the number of iterations to the noise level σ. For σ = 50, we found the best number of
iterations to be 1900, see Figure 2.15. For lower noise levels, fewer iterations are necessary.

The FoE framework is considered to be a very successful MRF-based approach to mod-
eling images and has been studied in later work, see e.g . [127, 105]. A disadvantage of the
FoE model is that the partition function is intractable. Hence, calculating the probability
of an image under the model is virtually impossible. In addition, the training procedure
is very slow. Weiss and Freeman [127] propose solutions to both these problems. High
likelihood filters are learned without the use of sampling, employing a procedure involving
iterated PCA computations. This makes the learning process relatively fast. A Gaussian
scale mixture (GSM) is used to model the potential function, which makes it possible to
compute a lower and upper bound on the partition function (together with the assumptions
that the filters have unit norm and are orthogonal to each other). In addition, it is shown
that the non-intuitive filters learned in [99] indeed capture properties of natural images (and
are not artifacts of the learning process).

In [105], an FoE model with GSM potentials is learned where the shape of the potentials is
not fixed beforehand, but is determined by the training procedure. It is shown that the new
model has heavier tails than other models and that its generative properties are superior. In
addition, it is shown that MAP is not the best solution to the denoising problem. Instead,
denoising is performed by estimating the Bayesian minimum mean squared error estimate
(MMSE) using sampling. Denoising is therefore performed in a purely generative setting.
This has the additional benefit of eliminating the need for ad-hoc modifications such as the
trade-off parameter λ or deciding on a specific number of iterations.
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2.8 BLS-GSM and other wavelet-based methods

Figure 2.13: Steerable pyramid decomposition of image “Lena”, using five scales. There
are two orientations per scale (images of the same size belong to the same scale). The
coarsest scale and the finest scales are special cases: The coarsest scale is not decomposed
into orientation sub-bands and the finest scale contains an additional “residual” image.

Many image denoising approaches perform denoising on a wavelet decomposition of the
noisy image. Wavelet decompositions have the desirable property of locality both in space
and in frequency, which is not the case for other transforms, such as the Fourier transform.
Wavelet-based denoising algorithms are based on the following steps. First, an image is
transformed into a wavelet domain. Next, denoising is effected on the wavelet coefficients,
and finally the denoised image is obtained by applying the inverse wavelet transform on
the denoised wavelet coefficients. Methods relying on this strategy and too numerous to
list in this work. We will focus on methods based on “steerable pyramid” [112] represen-
tation, though methods using other forms of decompositions also exist, e.g . curvelets [113],
contourlets [82], chirplets [2] and wedgelets [28].

Figure 2.13 shows a steerable pyramid decomposition of the image “Lena”. Decomposing
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an image into a steerable pyramid is a linear operation. A steerable pyramid is conceptually
similar to a Laplacian pyramid [17]: In both cases an image is represented using several
scales. The coarsest scale contains the lowest frequencies of the image and the finer scales
contain subsequently higher frequencies. A difference between the two representations is
that in the steerable pyramid, each scale contains several orientation sub-bands. Each ori-
entation sub-band corresponds to the response of a directional derivative operator. In the
example shown in Figure 2.13, there are two orientation sub-bands per scale, but any number
of orientation sub-bands can be used in principle. The steerable pyramid transform is over-
complete (by a factor of 4k

3 , where k is the number of orientation sub-bands per scale): The
decomposition is higher-dimensional than the original image. Over-completeness has both
advantages and disadvantages over orthogonal transforms: Performing an over-complete
transform is more computationally demanding than performing an orthogonal transform.
Another advantage of orthogonal transforms is that they preserve the inner-product (also
called the isometry property), so white noise in the input image remains white after the
transform. Over-complete transforms such as the steerable pyramid do not share this con-
venient property: White noise in the image becomes correlated in the transform domain.
However, over-complete transforms have the advantage of introducing fewer aliasing (or
“ringing”) artifacts. Ringing artifacts occur due to the Gibbs phenomenon when coefficients
of an orthogonal transform are set to zero. A similarity between the steerable pyramid and
orthogonal transforms is that the steerable pyramid decomposition is “self-inverting”: The
inverse transformation can be performed by applying the transpose of the matrix perform-
ing the forward transform. The same holds true for orthogonal transforms. The steerable
pyramid has frequently been used in image denoising [111, 93, 94, 39] as well as for other
applications, such as texture generation [92].
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Figure 2.14: The marginal histogram of coefficients in a steerable pyramid decomposition
has more kurtosis than a Gaussian distribution (i.e. it is heavier-tailed, or more “peaked”).
The conditional histogram of two spatially adjacent coefficients has the shape of a bow-tie.
A brighter color corresponds to higher probability. Each column in the image has been
independently normalized. When a coefficient is close to zero, a neighboring coefficient is
likely to be close to zero as well. The standard deviation of a coefficient scales approximately
linearly with the value of a neighboring coefficient.

Two properties of steerable pyramid decompositions are particularly useful for image
denoising. The first property is that the distribution of coefficients in a steerable pyramid
decomposition is highly peaked, see Figure 2.14a. The other property is that edges in the
input image cause a clustering in wavelet activity. This has the effect that the absolute
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values of neighboring coefficients are mutually dependent. This effect resembles a bow-
tie in conditional histograms, see Figure 2.14b. This property holds for spatially adjacent
coefficients, but also for coefficients corresponding to the same image location in different
scales or orientations.

Peaked marginal histograms: The property that marginal histograms of steerable pyramid
coefficients are highly peaked was the first property to have been exploited: In [111], the
shape of the marginal histogram is exploited, but the shape of the conditional histogram is
ignored. Assuming a noisy observation y = x + n of a pyramid coefficient x, an unbiased
least squares estimate of x is given by the mean of the posterior distribution:

x̂(y) =

∫
p(x|y)xdx (2.54)

=

∫
p(y|x)p(x)xdx∫
p(y|x)p(x)dx

, (2.55)

where p(y|x) is given by the distribution of the noise and p(x) is the prior of the signal.
In [111], a generalized Laplacian is used to model the signal prior: p(x) ∝ e−|

x
s |
p

, where s
and p are parameters which can be estimated directly from the noisy data. The fact that
the noise is correlated in the transform domain is ignored, and assumed to be AWG. The
pyramid coefficients can then be denoised by numerically integrating equation 2.55. The
denoised image is obtained by inverting the steerable pyramid transform. It is shown that
using this approach to denoising has a “soft” thresholding effect: Small wavelet coefficients
are attenuated, while larger coefficients are preserved. Intuitively, this result makes sense:
Given the highly peaked shape of the prior distribution, small coefficients are assumed to
arise due to coefficients with value zero. Denoising by attenuating small wavelet coefficients
is referred to as “coring” and pre-dates [111], see e.g . [98].

Mutually dependent neighboring coefficients: The mutual dependence of neighboring co-
efficients can be exploited for denoising in a number of ways [121, 94, 39]. A well-known
approach is based on Gaussian scale mixtures (GSMs) [3] and is referred to as BLS-GSM [94].
The idea is to model several pyramid coefficients together, using a GSM. In [94], the coeffi-
cients in a 3× 3 neighborhood in a given scale and orientation, together with the “parent”
coefficient at the same location but coarser scale are modeled as a vector x. The vector x is
modeled as a GSM: x =

√
zu, where z is a hidden random positive scalar multiplier, and u

is a zero-mean Gaussian random vector. z modulates the variance of the coefficients in the
neighborhood. The density of x is then given by

p(x) =

∫
p(x|z)p(z) dz (2.56)

=

∫ exp
(
−xT (zCu)−1x

2

)
(2π)N/2|zCu|

1
2

p(z) dz, (2.57)

where Cu is the covariance matrix of vector u. BLS-GSM seeks the Bayesian least squares
estimate for the coefficient in the center of each neighborhood.

BLS-GSM begins by decomposing a noisy image using a steerable pyramid. In the
transform domain, a noisy neighborhood y is given by:

y = x + n =
√
zu + n, (2.58)

where all three variables z, u and n are independent. Next, the covariance of the noise Cn is
estimated, which can be done in different ways, the simplest of which involves computing the
pyramid coefficients of delta functions in the image domain. Then, the noisy neighborhood
covariance Cy is estimated. The density of the observed neighborhood vector y conditioned
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on z is a zero-mean Gaussian, with covariance Cy|z = zCu + Cn. Taking expectations over
z gives us:

Cy = E{z}Cu + Cn. (2.59)

Since we have already estimated Cn, we can also get an estimate for the signal covariance:

Cu = Cy −Cn, (2.60)

where it is assumed that E{z} = 1.
Then, the goal is to compute the Bayesian least squares estimator E{xc|y} for the central

coefficient xc of each neighborhood. E{xc|y} therefore constitutes the denoising result for
each neighborhood. The Bayesian least squares estimator is given by the conditional mean:

E{xc|y} =

∫
xcp(xc|y) dxc (2.61)

=

∫ ∫ ∞
0

xcp(xc, z|y) dz dxc (2.62)

=

∫ ∫ ∞
0

xcp(xc|y, z)p(z|y) dz dxc (2.63)

=

∫ ∞
0

p(z|y)E{xc|y, z}dz. (2.64)

One can therefore compute E{xc|y} by numerically integrating over z. The distribution of
the multiplier, conditioned on the neighborhood y is computed using Bayes’ rule:

p(z|y) =
p(y|z)pz(z)∫ α

0
p(y|α)pz(α) dα

, (2.65)

where Jeffrey’s prior is used for z: pz(z) ∝ 1
z . The conditional density p(y|z) is a zero-mean

Gaussian and is given by

p(y|z) =
exp

(
−yT (zCu+Cn)

−1y
2

)
√

(2π)N |zCu + Cn|
, (2.66)

where we used the fact that Cy|z = zCu+Cn. E{x|y, z} can be computed using a Wiener es-
timate, because x is Gaussian when conditioned on z and the noise is additive and Gaussian:

E{x|y, z} = zCu(zCu + Cn)−1y, (2.67)

where Cu and Cn have already been computed. E{xc|y, z} can be computed by using a
variation of this formulation, but the exact derivation of E{xc|y, z} is quite involved and
therefore left out in this exposition. Once the Bayesian least squares estimator E{xc|y} has
been computed for the central coefficient of each neighborhood, the pyramid transform is
inverted to obtain the denoised image.

Figure 2.15 shows the result obtained using BLS-GSM on a noisy version of image “Lena”.
The result compares favorably to many other algorithms.
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noisy, PSNR: 14.16dB denoised, PSNR: 28.24dB

Figure 2.15: Results using BLS-GSM [94].

2.9 Dictionary-based methods

Several denoising algorithms rely on “dictionaries” for denoising image patches [75, 74, 1, 31].
It is usually assumed that an image x is corrupted with AWG noise:

y = x+ n. (2.68)

Denoising is performed patch-wise: Each patch of size k × k (with k usually between 8
and 12) is denoised separately and inserted into the denoised image. Usually, averaging is
performed in areas of overlapping patches.

Denoising relies on an over-complete dictionary D of size k2 ×m, where m > k2. The
dictionary contains a set of atoms, which can be thought of as basis functions. The idea
underlying dictionary-based denoising methods is to denoise by approximating the noisy
patch using a sparse linear combination of atoms. The problem to be solved is usually the
following:

min ||α||0 s.t. ||Dα− y||2 ≤ ε, (2.69)

where the `0-pseudo norm enforces sparsity of the solution. The problem is combinatorial
due to the `0 pseudo-norm and therefore usually impossible to solve exactly. Good ap-
proximations to the true solution can usually be found using orthogonal matching pursuit
(OMP) [89], which is a greedy procedure and therefore quite fast. It is possible to replace
the `0 norm with the `1 norm, in which case the problem is convex, though better solu-
tions are usually obtained using the `0 norm. The parameter ε is usually chosen in such a
way that the norm of the approximation error ||Dα− y||2 can be explained by the variance
of the noise. Typically, ε = k2((Cσ)2), where σ2 is the variance of the noise and C is a
hyper-parameter (typically C = 1.15).

The quality of the denoising result is highly dependent on the choice of the dictionary
D. Three possibilities exist:

1. The dictionary can be designed,

2. the dictionary can be learned globally on a dataset of noise-free images, or

3. the dictionary can be learned adaptively from the noisy image itself .
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designed learned globally learned adaptively

Figure 2.16: Various dictionaries. The designed dictionary is an over-complete DCT basis.
The learned dictionary was learned using stochastic gradient descent on the Berkeley seg-
mentation dataset [81]. The adapted dictionary was learned on the noisy Lena image using
KSVD [1].

One usually observes that learned dictionaries provide better results than designed dictio-
naries but that the best results are achieved with dictionaries that are adapted to the noisy
image at hand. An example of a designed dictionary is an over-complete DCT [31], see
Figure 2.16.

Learning a dictionary from a dataset: Learning a dictionary on a dataset of noise-free
images can be done by employing a gradient descent technique, such as stochastic gradient
descent [72]. One attempts to approximate an image patch x using the current version of
the dictionary:

min ||x−Dα||2 s.t. ||α||p < L, (2.70)

where L is a hyper-parameter and p is either 0 or 1. It is reported in [74] that better
results can be achieved by learning dictionaries with the `1-norm but using the `0-pseudo-
norm when denoising. One then updates the dictionary by following the gradient of the
approximation error over the dictionary:

D ← η
∂||x−Dα||2

∂D
, (2.71)

where η is a step size. Dictionaries learned in such a way typically contain features resembling
Gabor filters, see Figure 2.16.

KSVD: Learning from the noisy image: KSVD [1] is an iterative algorithm that learns
a dictionary on the noisy image at hand. One iteration of the algorithm consists of the
following two steps:

1. Find the coefficients α for each patch in the image (for example using OMP)

2. Update the dictionary, one column at a time.

Usually 10 iterations are sufficient to achieve good results. The step updating the dictionary
relies on an SVD-decomposition, hence the name of the algorithm. Dictionaries learned in
such a way often contain features also present in the image on which the dictionary was
learned, see Figure 2.16. Figure 2.17 shows a result obtained with KSVD.
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noisy, PSNR: 14.16dB denoised, PSNR: 27.57dB

Figure 2.17: Results using KSVD [1].

NLSC: NLSC [74] is a dictionary-based method that is similar to K-SVD in that the
dictionary is adapted to the noisy image at hand. A difference between the two methods is
that NLSC employs simultaneous sparse coding [118], which encourages similar-looking noisy
patches to be approximated using the same sparse decomposition. The idea underlying the
approach is that images contain self-similarities: Similar-looking patches are expected to be
found at several locations in an image. This idea is exploited by a number of other algorithms
and is discussed in more detail in Section 2.11. Figure 2.18 shows a result obtained using
NLSC. NLSC is one of the best currently available denoising algorithms in terms of quality
of the results, but requires long computation times.
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noisy, PSNR: 14.16dB denoised, PSNR: 28.95dB

Figure 2.18: Results using NLSC [74].

2.10 EPLL

Many denoising methods denoise image patches independently and apply averaging or other
similar techniques in areas of overlapping patches. Dictionary denoising method such as
KSVD [1] are examples of such methods. The problem with this approach is that the
averaging process can create patches in the denoised images that do not look good.

EPLL [132] is an acronym from expected patch log likelihood. The method contrasts
itself from methods that denoise patches independently by aiming at creating a denoised
image in which each patch is likely under a given patch prior, while staying close to the
noisy image. EPLL takes a maximum a posteriori (MAP) approach to denoising: Given an
image corrupted with AWG noise y = x + n, we want to find x̂:

x̂ = arg max
x

p(x|y) (2.72)

= arg max
x

p(y|x)p(x) (2.73)

= arg min
x

− log(p(y|x))− log(p(x)) (2.74)

= arg min
x

− log
λ

2
||x− y||2 − EPLL(x), (2.75)

where λ controls the trade-off between the prior and the data-fidelity term, as usual in MAP
estimation. The expected patch log-likelihood (EPLL) is defined as:

EPLL(x) =
∑
i

log p(Pix), (2.76)

where Pi extracts patch i out of an image. The EPLL is therefore the sum over the expected
patch log-likelihoods of all sliding window patches in an image. The EPLL is not the expected
log-likelihood of a full image.

Optimization is performed using half-quadratic splitting, which introduces auxiliary vari-
ables and alternates between two steps: (i) updating the auxiliary variables while keeping
the image patches fixed, and (ii) updating the image patches while keeping the auxiliary
variables fixed. This procedure is repeated for a small number of iterations (four or five in
the paper).
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We see that the method does not depend on a specific image prior: In principle, any
probabilistic patch prior could be used. An advantage of the method is that one need not
learn a prior on entire natural images, as other methods such as Fields of Experts attempt
to do. Instead, one need only learn a prior on natural image patches, which is considerably
easier.

Though the method can theoretically use any probabilistic patch prior, the best results
achieved in the paper are obtained using a Gaussian mixture model (GMM):

log p(x) = log

(
K∑
k=1

πkN(x|µk,Σk)

)
, (2.77)

which was trained using expectation maximization (EM) on 2× 106 natural image patches
using K = 200 Gaussians and patches of size 8× 8 pixels. All parameters are learned, with
full covariance matrices.

noisy, PSNR: 14.16dB denoised, PSNR: 28.42dB

Figure 2.19: Results using EPLL [132].

The results described in the paper are comparable to those achieved with other state-of-
the-art methods such as BM3D and NLSC. The result shown in Figure 2.19 demonstrates
that good results are indeed achievable with this method.
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2.11 BM3D

(a) (b)

Figure 2.20: Block matching applied on a noisy version of image Lena. Image (a) shows the
whole image, image (b) shows only a smaller region. The goal of the procedure is to find the
patches most similar to the reddish (reference) patch. The neighbors (blueish patches) have
to be found within a search region (represented by the larger black bounding box). Patches
can overlap. In BM3D, the red and blue patches would be denoised together.

BM3D [25] is often considered the state-of-the-art in image denoising. The name stands
for “block-matching and 3D-filtering”. The method assumes that a clean image x is cor-
rupted with AWG noise:

y = x+ n. (2.78)

The procedure does not explicitly rely on an image prior, but assumes the images to contain
similar-looking patches. In other words, given a “reference” patch in an image, it is likely
that similar patches exist elsewhere in the same image. Such similar-looking patches are
grouped in a procedure called block-matching, see Figure 2.20. The group of patches can
be regarded as a three-dimensional block. The patches in a block are denoised together
and collaboratively: Each patch helps to denoise the other patches. The algorithm proceeds
patch-wise: For each patch in the image, neighbors are found and grouped into a block,
denoised together, and re-inserted into their original locations. Each image patch can belong
to several blocks, which is different from clustering, where each patch can only belong to
one cluster.

Two types of transforms are applied on the block. The resulting coefficients are shrunk,
followed by the inverse of the transforms. This has the effect of denoising all patches in the
block. The denoised patches are inserted into the denoised image at the location at which
their noisy counterparts were found.

The main idea of the algorithm is that within a block, the image information is corre-
lated both within each patch and between patches (intra-patch correlations and inter -patch
correlations), whereas the noise is white and therefore not correlated. The first transform
is a 2D-transform such as a DCT-transform, which has the effect of exploiting intra-patch
correlations: A few coefficients of each patch will have large value. The second transform
is a 1D-transform such as the Haar-transform. This transform is applied along the third
dimension of the block: The same DCT-coefficient of all patches are transformed. This
has the effect of exploiting inter-patch correlations: A few Haar coefficients will have large
value. The crucial point is that the noise is white both before and after application of the
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transforms. The image information however has been concentrated into a few coefficients
with high values. This allows for effective denoising via shrinkage of coefficients.

The algorithm relies on two steps. The difference between the two steps lies in how
similar-looking patches are found and how coefficients are shrunk. In the first step, similar-
looking patches are found in the noisy image itself, as in Figure 2.20. Hard-thresholding is
used as a shrinkage procedure: All values below a threshold are set to 0. This first step
already provides a denoised image. In the second step, the denoised image obtained using the
first step is exploited. Similar looking-patches are found using the denoised image from the
first step, which is more reliable than looking for similar-looking patches in the noisy image.
Two blocks are formed: A block containing the noisy patches and a block containing the
corresponding denoised patches from the first step. The same transforms are applied on both
blocks. Shrinkage is then achieved using Wiener filtering: One attempts to approximate the
block of denoised patches by weighting the block of noisy patches. The second step of the
procedure is important and often leads to significant gains over the first step. The method is

noisy, PSNR: 14.16dB denoised, PSNR: 29.05dB

Figure 2.21: Results using BM3D [25].

relatively computationally intensive: For each patch, matching neighbors have to be found
and denoised. Both operations are time-consuming. The algorithm uses a few practical
tricks to reduce the computational burden. For example, not every image patch is used as
a reference patch; the algorithm rather skips a few pixels between reference patches. Also,
rather than searching for neighboring patches in the whole image, search is restricted to a
small window (see Figure 2.20). In practice, the algorithm is quite fast: Denoising an image
of size 512× 512 takes on the order of 5 seconds on a modern computer. The method often
achieves outstanding results (see Figure 2.21) and is considered state-of-the-art.
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2.12 Method taxonomy and discussion of the various ap-
proaches

1. Focus on images 2. Focus on noise

1.2. Decompositions
(e.g. wavelet, dictionaries)

1.3. Prior knowledge1.1. Filtering

1.3.b Internal knowledge1.3.a External knowledge

Denoising methods

Figure 2.22: A possible taxonomy of denoising methods.

We propose to classify denoising methods according to the hierarchy depicted in Figure 2.22.
Denoising methods follow one of the following two paradigms:

1. Focus on images: Methods making simple assumptions about the noise, and focusing
instead on the properties of images.

2. Focus on noise: Methods making simple assumptions about images, and focusing in-
stead on the properties of the noise.

In this section, we have described a number of denoising approaches following the first
paradigm. The noise is usually assumed to be AWG, whereas the images to be denoised are
assumed to contain more structure. This has become the standard setting in image denoising,
where the images to be denoised are so-called “natural” images, or images of every-day
scenes. However, certain situations might require a different approach. In Section 4 we
will discuss denoising of astronomical images, which follow statistics that are different from
natural images. An additional difference is that astronomical images are usually taken with
long exposure times. The noise arising in such settings is different from AWG noise and
contains more structure. In such situations, it often makes sense to focus on the properties
of the noise rather than on the properties of the images. The first denoising paradigm is
the approach taken by most algorithms. Few approaches follow the second paradigm (an
example of such an approach can be found in [45]).

The denoising algorithms belonging to the first paradigm can be further sub-divided into
the following categories:

1.1. Filtering: Linear and non-linear filtering-based methods, such as linear smoothing,
median filtering, bilateral filtering.

1.2. Decompositions: Methods based on wavelet or dictionary decompositions of the im-
age.

1.3. Prior knowledge: Methods based on global image statistics, or other image proper-
ties, such as self-similarities.

Algorithms cannot always be clearly assigned to one category and might sometimes belong
to several categories (e.g . Fields of Experts can be regarded as a filtering-based method, but
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also uses prior knowledge about images). Linear smoothing, median filtering, Matlab’s
wiener2 function, anisotropic diffusion and bilateral filtering can all be considered to be
filtering-based methods. BLS-GSM and KSVD are based on a decomposition of the image
(though KSVD can also be said to rely on prior knowledge). Fields of Experts, EPLL,
BM3D and NLSC rely on prior knowledge about images.

Methods based on prior knowledge about images can be further divided into:

1.3.a External knowledge Methods based on knowledge about all images.

1.3.b Internal knowledge Methods based on knowledge about the image to be denoised.

By external knowledge, we mean knowledge regarding the all natural images, whereas by
internal knowledge we mean knowledge gained from the noisy image itself. Fields of Experts
and EPLL belong to the category exploiting external knowledge, whereas BM3D and NLSC
belong to the category exploiting internal knowledge.

Methods based on internal knowledge are a more recent development than methods
based on external knowledge. The idea underlying methods exploiting internal knowledge
is to look for regions within an image that are similar in appearance. A simple example
of how to exploit this idea is to average pixels with a similar grey value within a given
spatial neighborhood. This is an idea resembling bilateral filtering [117], but was originally
proposed in [129]. More recently, this idea was extended to image patches: Given an image
patch, one looks for similar patches within the same image. This idea was first used for
texture synthesis [30]. The same idea can be used for image denoising: The NL-means
approach [9] looks for similar patches within a given noisy image and performs a weighted
average of the center pixels for denoising. BM3D [25] also exploits the idea of grouping
patches that are similar in appearance, but performs a more effective denoising step on the
group of patches than NL-means [9]. NLSC [74] is a further example of a method exploiting
this idea: Similar-looking patches are grouped and denoised together using simultaneous
sparse coding, where a dictionary is used that is adapted to the noisy image itself.

Dictionary-based methods can belong to either the category exploiting external or inter-
nal knowledge, depending on what kind of dictionary is used for sparse representation. If
the dictionary is learned on a large dataset of images (such as the global setting in [31]), the
method belongs to the category of methods exploiting external knowledge. If the method
learns a dictionary on the noisy image at hand, such as KSVD [1], the method belongs to
the category of methods exploiting internal knowledge. NLSC employs a dictionary that is
learned on a dataset of noise-free images, but adapts this dictionary to the noisy image at
hand, similarly to KSVD. NLSC can therefore be said to belong both to the category em-
ploying internal and to the category employing external knowledge. In case the dictionary is
hand-crafted (as opposed to learned on either a larger dataset or a single noisy image), the
method belongs to the same category as methods based on wavelet-decompositions: They
rely on a decomposition of the image that is useful, but do not rely on learning.

Strengths and weaknesses of the approaches: Denoising methods vary in terms of de-
noising results and in terms of the required computation times to denoise a given image.
The computationally most intensive methods learn or adapt a dictionary: KSVD [1] and
NLSC [74] require long computation times (up to an hour on a modern machine for images
of size 512× 512). Some filtering-based methods such as wiener2, but also BLS-GSM and
BM3D are particularly fast and require a few seconds of computation for images of size
512 × 512. Most methods lie somewhere in the middle of these two extremes e.g . EPLL
requires approximately five minutes for images of size 512× 512.

BM3D, EPLL and NLSC perform better than other methods (e.g . BLS-GSM) on average.
However, the methods have complementary strengths and weaknesses: Methods relying on
internal knowledge are particularly effective on images with repeating structure, whereas
methods relying on external knowledge are usually more effective on images with more
complex structures which are not identical within the same image, see Figure 2.23. It

50



Image “Man” Image “Barbara”

Figure 2.23: Methods based on external knowledge such as EPLL [132] tend to perform well
on images with complex structures (e.g . image “Man”) , whereas methods based on internal
knowledge such as BM3D [25] and NLSC [74] tend to perform well on images with regular
structure (e.g . image “Barbara”).

has been noted elsewhere [58] that denoising methods have complementary strengths and
weaknesses.
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2.13 Contributions of this thesis

Image denoising is a long-standing problem and has been thoroughly studied. In this section,
we describe three areas in which we were able to contribute to the field of image denoising
and give an overview of the remaining chapters of this thesis.

Figure 2.24: At higher noise levels, denoised images often contain cloudy-looking artifacts.
These are due to improper handling of lower frequencies. Result obtained with KSVD, noisy
image contained AWG noise with σ = 50.

High noise settings: Applying denoising methods on images contaminated with higher
levels of noise often lead to “cloudy” artifacts, see Figures 2.17, and 2.24. Such artifacts
occur due to improper handling of lower frequencies. Can this situation be avoided?

We will see in Chapter 3 that many denoising methods are based on small patches or small
filters. Thus, they naturally focus only on high frequencies. This leads to a deterioration
of performance at higher noise levels, because AWG noise corrupts all frequencies. We will
demonstrate that methods that improperly handle low frequencies can be combined with a
meta-procedure in such a way as to also properly handle low frequencies. No modification
of the existing methods is required for the meta-procedure to work. A limitation of the
approach is that not all methods can be improved on: Some methods already properly
handle low frequencies.

Astronomical images: In Section 2.12 above, we mentioned that most denoising methods
belong to category focussing on images instead of noise. We ask the question: When is it
useful to consider the paradigm focussing on noise? In Chapter 4 we consider astronomical
images, where expossure times are typically long and ISO settings high. The noise under
such settings is different for every pixel of the camera’s sensor. Hence, it becomes interesting
to study and model the noise. We will see that doing so indeed leads to better denoising
results for astronomical images.

Learning vs. engineering, internal vs. external knowledge: Most denoising methods rely
on cleverly designed algorithms. This is also the case for methods relying on a learning
component: Fields of Experts [99] and EPLL [132] are two examples of methods that rely
on learning to capture statistics about natural images (or natural image patches for EPLL)
but require sophisticated methods to exploit this knowledge. Thus a question arises: Is it
possible to rely more on learning and less on engineering?
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A further observation is that some of the best-performing denoising methods heavily rely
on what we refer to as internal knowledge. BM3D [25] is a prime example: The method is
considered state-of-the-art, and relies entirely on internal knowledge. We therefore ask the
question: Is it also possible to achieve excellent results with external knowledge?

noisy, PSNR: 14.16dB denoised, PSNR: 29.34dB

Figure 2.25: Results using an MLP, see Chapter 5. This result is better than the result
achieved with all previously described methods, including BM3D and NLSC. In Chapter 5,
we will see that MLPs outperform all competitors on most images.

In Chapter 5, we answer both these questions with yes. We demonstrate that it is possible
to outperform the previous state-of-the-art in image denoising with multi-layer perceptrons
(MLPs, a type of neural network) trained to denoise image patches. This method requires
little engineering and relies fully on external knowledge. Figure 2.25 shows a result obtained
with such an MLP.

An additional question begs to be asked: Is it possible to combine internal and external
knowledge in order to achieve even better results? In Section 5.9 we propose to combine the
results of several denoising algorithms, using an MLP. By combining the results of BM3D
and an MLP with a second MLP we combine internal and external knowledge and indeed
achieve better results. The output of this method is usually superior to the best of the
inputs. Figure 2.26 shows an example of results achieved using this method.

Training MLPs is sometimes considered more of an art than a science: The choice of the
architecture as well as other parameters may seem arbitrary. In Chapter 6, we describe the
training procedure of our MLPs in detail and discuss which trade-offs have to be considered
in order to achieve good results. An additional criticism regarding MLPs is that they are
often seen as “black boxes”: One usually does not understand their inner workings. We
show that it is possible to gain some understanding about how MLPs achieve denoising.
Put simply, the MLPs work as feature detectors and generators: The MLPs “look for”
certain features in the noisy input patch and, if found, copy these same features into the
output patch. The noise is removed through saturation of the sigmoid layers within the
MLPs.
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noisy, PSNR: 14.16dB denoised, PSNR: 29.48dB

Figure 2.26: Results using an ensembling MLP (E-MLP), see Section 5.9. The E-MLP
efficiently combines the result obtained with BM3D and another MLP.
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3

Improving existing denoising methods using a

multi-scale meta-procedure

Chapter abstract Many state-of-the-art denoising algorithms focus on recovering high-
frequency details in noisy images. However, images corrupted by large amounts of noise
are also degraded in the lower frequencies. Thus properly handling all frequency bands
allows us to better denoise in such regimes. To improve existing denoising algorithms we
propose a meta-procedure that applies existing denoising algorithms across different scales
and combines the resulting images into a single denoised image. With a comprehensive
evaluation we show that the performance of many state-of-the-art denoising algorithms can
be improved.

The material of this chapter is based on the following publication:

[11] H.C. Burger, and S. Harmeling. Improving denoising algorithms via a multi-scale
meta-procedure. Proceedings of the 33rd international conference on Pattern recognition
(DAGM). 2011.

This paper was awarded with a prize at DAGM 2011.
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noisy BM3D [25] MS-BM3D (our approach)
σ = 200, PSNR: 7.59dB PSNR: 18.88dB PSNR: 20.96dB

Figure 3.1: In high noise settings, our approach improves the results achieved with BM3D.

3.1 Introduction

The problem of removing noise from natural images has been extensively studied, so methods
to denoise natural images are numerous and diverse. [34] classifies denoising algorithms into
three categories: The first class of algorithms rely on smoothing parts of the noisy image [101,
126, 117] with the aim of “smoothing out” the noise while preserving image details. The
second class of denoising algorithms exploit learned image statistics. A natural image model
is typically learned on a noise-free training set (such as the Berkeley segmentation dataset)
and then exploited to denoise images [100, 127, 57]. In some cases, denoising might involve
the careful shrinkage of coefficients. For example [111, 21, 91, 94] involve shrinkage of
wavelet coefficients. Other methods denoise small images patches by representing them as
sparse linear combinations of elements of a learned dictionary [31, 75, 74]. The third class
of algorithms exploits the fact that different patches in the same image are often similar in
appearance [25, 34].

Denoising algorithms are usually evaluated on their ability to remove additive white
Gaussian noise (AWGN). Standard test images exist for this purpose. The most popular
performance measure is arguably the peak signal to noise ratio (PSNR), which is related to
the mean squared error (MSE).

Hypothesis: We speculate that most denoising algorithms focus on removing noise on
the higher frequencies and thus are often best suited for recovering fine-scale information.
Wiener filtering, bilateral filtering [117], but also the fields of experts approach [100] rely
on relatively small filters to denoise images. The small size of these filters causes these
approaches to ignore larger-scale information. Denoising approaches based on dictionaries
such as [31] typically decompose the image into small patches and then denoise the patches
separately and independently. Larger-scale structure is lost when the image is decomposed
into small patches. So we hypothesize that many denoising algorithms can be improved by
employing a multi-scale approach.

Assumption: Our approach assumes that the statistics of natural images are invariant
to changes in spatial scale. An intuitive justification for this assumption is that scenes
are about equally likely to be viewed from different distances. This assumption has been
successfully exploited by others [94].

Contributions: We present a meta-procedure than can be used in combination with
existing denoising methods, yet often improves the results. We choose algorithms from all
three categories to show that our procedure is versatile. We evaluate the PSNR on a set
of 13 standard test images with varying amounts of added noise. In most cases, we use
commonly available implementations of these algorithms.
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Related work: Besides the denoising method mentioned above, there is a procedure
that is relatively similar to ours. In [34], the authors introduce the “stochastic denois-
ing” procedure and propose an extension (called “multi-pass denoising”) in order to handle
“larger-scale” noise (i.e. noise that is not uncorrelated across neighboring pixels). The ex-
tension is similar to our meta-procedure in that in addition to the original image, a single
down-scaled version is denoised. The down-scaled denoised image is up-scaled and combined
with the denoised image of the original size. Different from our method is that the authors
combine the images using a pixel-specific linear blend between the two images. The ratio of
the blend is controlled by the gradient of the image at that pixel. No quantitative evaluation
was provided in [34], but we include it in our evaluation. [95] also considers a multiscale
approach for image denoising by thresholding coefficients in different frequency bands.

3.2 Down-scaling has a denoising effect

When an image that has been corrupted with AWGN is down-scaled (low-pass filtered fol-
lowed by down-sampling), the image becomes more recognisable. The effect is illustrated
in Fig. 3.2: adding a large amount of Gaussian noise leaves the “Lena” image barely recog-
nisable (upper left). Nonetheless, the down-scaled version (upper middle) seems to contain
much less noise.
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Figure 3.2: Noisy Lena becomes less noisy by down- and up-sampling (top row) with power
spectra (bottom row).

Down-scaling an image effectively averages neighboring pixel values, causing the uncor-
related values of the noise to become smaller. Since neighboring pixels in natural images
are often highly correlated, the down-scaling process is not that damaging to the image
information. Another explanation is that natural images have the most energy in the low
frequencies whereas AWGN is uniformly spread over the whole spectrum. Down-scaling an
image keeps mainly the low frequencies, which are precisely the frequencies where the image
information is strongest (bottom row in Fig. 3.2). Nonetheless, if the amount of noise is very
large, frequencies in the middle of the spectrum are also affected, so the image information
in lower frequencies should also be denoised.
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3.3 How to denoise lower frequencies

We imagine a hypothetical scenario in which we wish to recover the low frequencies of a
noisy image as best as possible. To evaluate how well we recovered the low frequencies,
we compare the resulting image to a down-scaled version of the ground truth image. We
compare two approaches:

1. First denoise, then down-scale the result.

2. First down-scale, then denoise.

Which approach is better? In the first approach, the denoising algorithm has more in-
formation available, while in the second approach the denoising algorithm is applied to the
down-sampled version. Denoising a down-scaled image should be an easier task, which would
suggest that the second approach is better. If the second approach achieves better results,
we could conclude that denoising algorithms are not good at recovering large-scale (i.e. low
frequency) information, confirming the hypothesis we advanced in the introduction.

Fig. 3.3 compares the two approaches using KSVD as the denoising procedure. Com-
paring the achieved PSNRs we see that the second approach is preferable to the first. This
effect also holds for other denoising algorithms for a variety of different noise settings, see
Figure 3.4.

Figure 3.3: Which approach better recovers the low frequencies? First down-scaling, then
denoising is better than the other way around when the noise is strong.

Thus we can conclude that if we wish to recover low-frequency information with a de-
noising algorithm that is not designed to recover low frequencies, down-scaling the image
might help. Effectively the down-scaling transforms the low-frequency information into high-
frequency information which can be accessed by the denoising algorithm. In the following
we show how this insight can be exploited with a multi-scale procedure such that the high-
frequencies are recovered from the given noisy image, while we get the low frequencies from
a down-scaled version of it.

3.4 Multi-scale denoising

We propose a meta-procedure that relies on denoising not only the original noisy image, but
also down-scaled versions of that image. This meta-procedure is formulated such that it can
be combined with any existing denoising algorithm. The last step of our procedure consists
in combining the denoised images at the different scales. The combination is motivated by
Laplacian pyramids. Fig. 3.5 summarizes our method graphically.

We will denote by dα(x) a procedure that down-scales the image x by the factor α.
Similarly, we denote by uα(x) the procedure that up-scales the image x by the factor α.
Re-scaling an image involves a filtering step, followed by re-sampling. In practice, we ap-
plied Matlab’s imresize function with the Lanczos-3 kernel. Other kernels do not lead to
significantly different results.
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Figure 3.4: The effect observed in Figure 3.3 holds for a number of denoising algorithms.
A value larger than 0 indicates that it is better to first down-scale, then denoise than vice-
versa. So we see that first down-scaling, then denoising is better than the other way around
when the noise is strong.

Note that resizing is a linear operator which can be represented as a matrix D. The
covariance matrix of downsampled Gaussian noise is proportional to DDT which is approx-
imately the identity matrix for most resampling kernels (e.g . Lanczos). This fact implies
that the AWGN assumption also holds for downsampled images.

Denoising at different scales. As parameters to our procedure we initially choose
a denoising algorithm and scaling factors α1, . . . , αn (sorted in ascending order). Given a
noisy image x0, we create n down-scaled versions x1, . . . , xn,

x1 = dα1(x0); · · · xn = dαn(x0). (3.1)

The images x0, . . . , xn are subsequently denoised using the same denoising procedure:

y0 = denoise(x0); · · · yn = denoise(xn). (3.2)

Next we combine the n + 1 denoised images y0, . . . , yn in a Laplacian-pyramid fashion to
obtain the best possible denoised image z0 (which will have the same size as the input image
x0).

Recombining the images on the different scales. For this we decompose the image
yi into low and high frequency components li and hi:

li = dαi/αj (yi) hi = yi − uαj/αi(li). (3.3)

Next, the low frequency information li is discarded and replaced by yi+1, which has the
same size as li. We do so because yi+1 contains more accurate low-frequency information.
Combining yi+1 and hi we obtain a reconstruction zi at level i:

zi = hi + uαj/αi(yi+1) (3.4)

which combines the best of yi and yi+1, i.e. the high frequencies of yi and the low frequencies
from yi+1.

As common for Laplacian pyramids, we start the multi-scale reconstruction with the two
smallest images yn−1 and yn and proceed through all scales until we reconstruct the image
z0 which is the denoising result of our method.
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Figure 3.5: Our procedure denoises a noisy image at different scales and then combines
these images similarly to Laplacian pyramids.

Shrinking high frequency coefficients. The right panel in Fig. 3.6 shows the benefit
of using the proposed multi-scale meta-procedure with two scales in combination with the
KSVD denoising algorithm. At noise levels above σ = 25, the meta-procedure (MS-KSVD,
no thresholding, line ’—x—’) improves the results over the plain denoising algorithm (solid
line). At first, the improvement grows with growing noisiness. However, when the noise
becomes very strong, this effect is reversed: The multi-scale meta-procedure helps less and
less. This effect is due to the fact that the high-frequency components zi are beneficial
in lower noise settings, but detrimental at higher noise levels. At very high noise levels,
the denoising algorithm becomes incompetent at recovering high-frequencies. A possible
solution to the problem is to attenuate the values in the high-frequency image zi in such a
way as to keep only the strongest components. We replace Eq. (3.4) by:

zi = T (hi, λ) + uαj/αi(yj) , (3.5)

where T (hi, λ) is the hard-thresholding operator with threshold λ. Other attenuation meth-
ods lead to similar results.

The three images on the left of Fig. 3.6 show the effect of the hard-thresholding operator
on a high-frequency image: The smaller values in the high-frequency are mostly due to errors
in the denoising procedure and are successfully removed by the thresholding operation. The
larger values however are unlikely to be due to errors in the denoising procedure and are
therefore kept.

3.5 Experimental evaluation and results

Our meta-procedure is sensitive to the threshold parameter λ as well as to the sizes and
numbers of scales used in the Laplacian pyramid. We tuned those hyperparameters for each
considered denoising algorithm and for each noise level σ on a training set of 20 images from
the Berkeley segmentation training dataset, see Figure 3.7. The smallest number of scales
is 1 (no multi-scale approach) and the largest is 4. The scale sizes we chose are (1/2)k with
0 ≤ k ≤ 3. This corresponds to repeatedly down-scaling by a factor of two.
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Figure 3.6: Left: high frequencies of the clean image (lower-right corner of “Barbara”).
Center: high frequency image of the denoised image (recovered from noisy image with
σ = 100). The image contains mostly noise, but Barbara’s pants are discernible. Right:
thresholded high frequency image. Structure from the pants is kept. Panel on the right
shows that thresholding helps.

As the test set, we used the 13 standard gray-scale images commonly known as: “Bar-
bara”, “Boat”, “Cameraman”, “Couple”, “Fingerprint”, “Flintstones”, “Hill”, “House”,
“Baboon”, “F16”, “Lena”, “Man” and “Peppers” (see Figure 3.7).

We applied our meta-procedure to nine state-of-the-art denoising algorithms whose im-
plementations are commonly available. (1) Wiener filtering using Matlab’s wiener2 function
with the default neighborhood size of 3. (2) Bilateral filtering [117]1 with three hyper-
parameters that need to be set. Empirically, we found 10 to be a good value for the half-size
of the Gaussian bilateral filter window. We chose σ1 = 3 and set σ2 between 10−4 and 2.2
depending on the noisiness of the image. (3) Bayesian least-squares Gaussian scale mixtures
(BLS-GSM) [94]2, (4) Stochastic denoising [34]3, (5) Block-matching 3D (BM3D) [25]4, (6)
Fields of Experts (FoE) [100]5, (7) Basis roation fields of experts (BRFoE) [127]6, and (8)
Total variation denoising (TV) [101]7 all have implementations publicly available online. We
used the default parameters for all methods except for FoE, where we were able to improve
results over the publicly available implementation by adapting the number of iterations to
the amount of noise in the image. We used our own implementation for (9) KSVD [31]. We
found 10 iterations for training the dictionary to be sufficient.

Improvements for varying noise levels. Fig. 3.8 reports for various noise levels σ
the difference between the results obtained in the single scale setting (denoted “baseline
. . . ”) compared to our multi-scale meta-procedure (denoted “MS-. . . ”). We also included
results obtained with the “multi-pass” procedure proposed in [34] (denoted “Estrada-. . . ”).
The integer values from one to four along the line of our multi-scale procedure (“—x—”)
indicate the number of scales applied.

When the noise level is low, in most cases our multi-scale meta-procedure does not
improve the results of the baseline algorithm. In fact, the results are in those cases identical

1http://www.mathworks.com/matlabcentral/fileexchange/12191
2http://decsai.ugr.es/~javier/denoise/software/
3http://www.cs.utoronto.ca/~strider/Denoise/
4http://www.cs.tut.fi/~foi/GCF-BM3D/
5http://www.gris.informatik.tu-darmstadt.de/~sroth/research/foe/index.html
6http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
7http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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training images test images

Figure 3.7: Training images (Berkeley segmentation dataset) for setting the hyper parame-
ters, and test images.

to the baseline algorithm. This happens when our multi-scale approach employs only the
original scale (leading to the original denoising algorithm), indicating that in those noise
regimes, it was not beneficial to use more scales in the training set.

The largest improvement achieved with our multi-scale meta-procedure occurs when the
noise becomes stronger, which corrupts the low frequencies more and more. The improve-
ment is particularly dramatic for Wiener and BRFoE (more than 8dB), which are patch-
based methods that ignore the lower frequencies. Also KSVD is a method that is based on
small patches, which also makes it blind to low frequencies, explaining the improvements
obtained. However, some algorithms cannot be improved, such as BLS-GSM and Total Vari-
ation. This can be explained by the fact that BLS-GSM is a wavelet method and therefore
already a multi-scale algorithm. So we see that a limitation of our meta-procedure is that
it is only useful to apply it to denoising methods which are not already considering lower
frequencies.

Note that our proposed meta-procedure outperforms the procedure by Estrada et al. [34]
in almost all cases. Furthermore, our approach almost never deteriorates the denoising
results, which sometimes happens for Estrada’s method, especially when the noise is low.
The improvements are reported in terms of PSNR, but we observed similar improvements
in the structural similarity index [123].

In Figures 3.10, 3.11, and 3.12 we show the results obtained with all nine denoising
algorithms on images Lena, Barbara and Peppers with σ = 130. For KSVD it is especially
clear that low frequencies are not properly handled: Areas that should be smooth have a
“cloudy” appearance. Our multi-scale approach strongly reduces these artifacts. In images
Lena and Peppers, FoE produces blurry results. Our multi-scale approach produces sharper
results (see e.g . the eyes in image Lena). A similar effect can be observed with KSVD on
image Barbara: The pattern of the tablecloth is not visible without our multi-scale extension,
but is apparent with our multi-scale extension. Wiener filtering produces results that look
noisy, but the multi-scale extension greatly improves the results. In fact, MS-Wiener achieves
better results than KSVD on these three images.

KSVD vs. BLS-GSM revisited In [31], the KSVD denoising algorithm is compared
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Figure 3.8: Improvements achieved by combining our meta-procedure with nine different
denoising algorithms. Results are averaged over 13 test images.
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Figure 3.9: The overall best methods compared to the baseline BM3D. For high noise
setting our multi-scale approach applied to BM3D leads to the best results.

to BLS-GSM, described in [94]. It was noted that on the images “Peppers”, “House” and
“Barbara”, KSVD outperforms BLS-GSM as long as the noise is below σ = 50. When the
noise level is increased, BLS-GSM outperforms KSVD. We repeat the experiment on our
images, but this time also report the results achieved with the multi-scale extension applied
to KSVD (Fig. 3.9). We indeed observe that baseline KSVD outperforms BLS-GSM when
the noise is low. However, the multi-scale version of KSVD outperforms BLS-GSM on all
noise settings, see Fig. 3.9.

Multi-scale KSVD vs. BM3D BM3D is often considered to be the best denoising
algorithm currently available, even though Fig. 3.9 shows that for high noise levels BLS-
GSM is superior. Also the multi-scale extensions of KSVD is better when the noise is very
high.

Multi-scale BM3D vs. all others Our multi-scale extension combined with BM3D
delivers results that outperform all other denoising algorithms especially on the high noise
levels, see Fig. 3.9.

3.6 Conclusion

For high noise levels, not only the high frequencies but also the low frequencies are corrupted.
However, most image denoising algorithms are not always good at recovering low-frequency
information. To improve such algorithms we devised a strategy to improve the denoising
results using a multi-scale approach.

In comprehensive experiments we have shown that several state-of-the-art image denois-
ing algorithms can be improved using this approach. Even though BM3D is arguably one of
the best currently existing denoising algorithms, our method was able to improve its results
on images that have been corrupted by high noise levels.
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noisy ground truth KSVD MS-KSVD

PSNR:8.97dB PSNR:20.67dB PSNR:24.66dB

SSIM:0.117 SSIM:0.478 SSIM:0.738

FoE MS-FoE BRFoE MS-BRFoE

PSNR:22.21dB PSNR:23.96dB PSNR:15.30dB PSNR:22.58dB

SSIM:0.686 SSIM:0.716 SSIM:0.251 SSIM:0.599

Wiener MS-Wiener BilateralFiltering MS-BilateralFiltering

PSNR:14.49dB PSNR:23.43dB PSNR:23.15dB PSNR:23.63dB

SSIM:0.228 SSIM:0.671 SSIM:0.580 SSIM:0.656

BM3D MS-BM3D BLS-GSM MS-BLS-GSM

PSNR:24.36dB PSNR:25.07dB PSNR:24.26dB PSNR:24.35dB

SSIM:0.705 SSIM:0.745 SSIM:0.688 SSIM:0.708

TV MS-TV Stochastic MS-Stochastic

PSNR:23.48dB PSNR:23.76dB PSNR:19.33dB PSNR:22.90dB

SSIM:0.700 SSIM:0.707 SSIM:0.358 SSIM:0.549

Figure 3.10: Results obtained with our method on image “Lena”, corrupted with AWG noise
with σ = 130.
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noisy ground truth KSVD MS-KSVD

PSNR:9.02dB PSNR:19.66dB PSNR:21.65dB

SSIM:0.146 SSIM:0.498 SSIM:0.643

FoE MS-FoE BRFoE MS-BRFoE

PSNR:20.21dB PSNR:21.27dB PSNR:15.00dB PSNR:20.67dB

SSIM:0.593 SSIM:0.631 SSIM:0.278 SSIM:0.549

Wiener MS-Wiener BilateralFiltering MS-BilateralFiltering

PSNR:14.32dB PSNR:21.00dB PSNR:20.99dB PSNR:21.03dB

SSIM:0.261 SSIM:0.591 SSIM:0.556 SSIM:0.580

BM3D MS-BM3D BLS-GSM MS-BLS-GSM

PSNR:21.95dB PSNR:21.92dB PSNR:21.44dB PSNR:21.52dB

SSIM:0.653 SSIM:0.664 SSIM:0.612 SSIM:0.628

TV MS-TV Stochastic MS-Stochastic

PSNR:20.86dB PSNR:20.96dB PSNR:18.36dB PSNR:20.81dB

SSIM:0.592 SSIM:0.596 SSIM:0.380 SSIM:0.532

Figure 3.11: Results obtained with our method on image “Barbara”, corrupted with AWG
noise with σ = 130.
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noisy ground truth KSVD MS-KSVD

PSNR:9.01dB PSNR:19.67dB PSNR:21.10dB

SSIM:0.039 SSIM:0.332 SSIM:0.627

FoE MS-FoE BRFoE MS-BRFoE

PSNR:19.54dB PSNR:20.72dB PSNR:14.82dB PSNR:19.59dB

SSIM:0.597 SSIM:0.612 SSIM:0.224 SSIM:0.550

Wiener MS-Wiener BilateralFiltering MS-BilateralFiltering

PSNR:14.53dB PSNR:20.34dB PSNR:20.62dB PSNR:20.63dB

SSIM:0.170 SSIM:0.592 SSIM:0.587 SSIM:0.595

BM3D MS-BM3D BLS-GSM MS-BLS-GSM

PSNR:21.84dB PSNR:21.41dB PSNR:21.39dB PSNR:21.23dB

SSIM:0.628 SSIM:0.642 SSIM:0.568 SSIM:0.633

TV MS-TV Stochastic MS-Stochastic

PSNR:19.85dB PSNR:20.22dB PSNR:18.70dB PSNR:20.37dB

SSIM:0.615 SSIM:0.619 SSIM:0.328 SSIM:0.547

Figure 3.12: Results obtained with our method on image “Peppers”, corrupted with AWG
noise with σ = 130.
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4

Astronomical image denoising using a

pixel-specific noise model

Chapter abstract For digital photographs of astronomical objects, where exposure times
are usually long and ISO settings high, the so-called dark-current is a significant source of
noise. Dark-current refers to thermally generated electrons and is therefore present even in
the absence of light. In this chapter, we present a novel approach for denoising astronomical
images that have been corrupted by dark-current noise. Our method relies on a probabilistic
description of the dark-current of each pixel of a given camera. The noise model is then
combined with an image prior which is adapted to astronomical images. In a laboratory
environment, we use a black and white CCD camera containing a cooling unit and show that
our method is superior to existing methods in terms of root mean squared error. Further-
more, we show that our method is practically relevant by providing visually more appealing
results on astronomical photographs taken with a single lens reflex CMOS camera.

The material of this chapter is based on the following publication:

[14] H.C. Burger, B. Schölkopf, and S. Harmeling. Removing noise from astronomical images
using a pixel-specific noise model. International Conference on Computational Photography
(ICCP). 2011.

69



4.1 Introduction

The problem of removing noise from images has been extensively studied. Methods to
denoise images are numerous and diverse, see Chapter 2. However, most work focuses on
the denoising of natural images or images of everyday scenes. Denoising algorithms are
usually evaluated on their ability to remove additive white Gaussian noise with zero mean
and uniform variance across the image. Often it is assumed that the variance of the noise is
known.

The state-of-the-art image denoising methods try to leverage properties that are inherent
to natural images. E.g . denoising with Fields of Experts [100] exploits the statistics of
natural images: the algorithm relies on a set of small filters that have been trained on a
dataset of natural images. Another successful denoising method, Bayesian least squares
- Gaussian scale mixtures (BLS-GSM) [94] applies a wavelet transform on a noisy image
and then exploits correlations between neighboring coefficients that are observed on natural
images. A further recent method, called BM3D [25] uses the fact that in natural images,
different patches are often similar in appearance.

The problem of attenuating noise in astronomical images is quite different, however. As-
tronomical images have statistics that are completely different from natural images. Often,
such images contain little structure, such as a few stars against a black background. In ad-
dition, the characteristics on the dark-current noise that corrupts these images differs from
the uniform additive white Gaussian noise most methods have been tuned to remove. We
will show that pixels of a sensor behave differently. Therefore, we emphasize understanding
and exploiting the statistics of the noise, rather than the image.

Assumption: The statistics of sensor noise is not adequately described by uniform additive
white Gaussian noise (AWGN), see e.g . [49].

Hypothesis: Exploiting the noise statistics of each individual pixel of a camera’s sensor
leads to better denoising results.

Contribution: We present a novel method to remove noise from astronomical images that
have been corrupted by dark-current noise. Our method relies on the combination of a
statistical description of the noise of each pixel of a camera’s sensor and an image prior. We
show that the results achieved in that way are better than those obtained with state-of-the-
art denoising methods.

Related work: Besides the state-of-the-art works on image denoising mentioned above,
various authors have tried to create an artificial dark frame to decrease dark current noise.
Such dark-frames are created in such a way as to optimize some image quality measure once
the dark-frame has been subtracted from the noisy image. E.g ., Goesele et al . [44] have
proposed to create an artificial dark-frame by scaling a given dark-frame in such a way as
to minimize the entropy of the image. The method assumes that dark-current increases
with increasing temperature, but does not take into account the random fluctuations for the
dark-current. Gomez-Rodriguez et al . [45] have proposed to create a convex combination of
previously recorded dark-frames in such a way as to minimize the discrete gradient of the
image at certain locations.

4.2 Dark-current noise

There exist many sources of noise in the imaging process. The different units of a CCD chip
produce different voltages for the same amount of input light, a phenomenon sometimes
called “fixed pattern noise” (FPN). This effect is due to the fact that the wells in a CCD
chip slightly vary in size. An imaging sensor also produces “dark current”, which is due to
thermal energy [119] and therefore also present in the absence of light. The analog to digital
conversion process also introduces noise.
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In the following we are not considering all possible sources of noise, but focus our at-
tention on the image sensor’s dark current. The thermal energy of the imaging sensor frees
electrons, which then accumulate in the chip’s wells. When an image is read out, the thermal
electrons are indistinguishable from photoelectrons. We therefore assume the dark current
to be additive and independent of the image signal. This assumption has been successfully
exploited by others to denoise astronomical images [45]. Random samples of dark-current
can be recorded with a so-called “dark-frame”, which is a photograph taken with closed lens
and non-zero exposure time.

Since dark-current noise is due to thermal electrons, it is possible to reduce the amount
of dark-current by cooling the camera’s sensor. For cameras on which cooling the image
sensor is not possible, a simple approach for denoising photographs is to subtract a dark-
frame with matching camera settings from the image. An improvement over this method
would be to subtract the average of many dark-frames [49], thereby reducing the random
components of the dark current.

Dark-current depends on the exposure time of the image, as well as the ISO-setting of
the camera and the temperature of the image sensor [128]. More generally speaking, the
problem of removing dark-current noise can be seen as a decomposition problem: Given a
noisy observation y, what is the most likely true image x and the most likely noise sample
d such that y = x + d, see Fig. 4.1. The problem is solvable if we exploit knowledge about
the statistics of the image and about the distribution of the noise.

y = x + d
observation true image noise

Figure 4.1: The noisy image is modelled as a sum of the true image and the dark current.
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Figure 4.2: Mean (top) and variance (bottom) of 1000 randomly chosen pixels for decreasing
temperatures (left to right).

To study the statistics of dark current, we use a camera with a CCD chip (pco.2000,
image sensor KAI-4021, cooled) that has a fixed conversion factor of 2.2 electrons per pixel
count. Each dark-frame contains 2048 × 2048 pixels. Each pixel value is encoded as a 16
bit value. The camera has a built-in cooling unit, allowing us to study the property of the
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noise at different temperature settings. We record 200 dark-frames with 10 second exposure
time at chip temperatures 10◦C, 5◦C, 0◦C, and −25◦C.

We randomly select 1000 pixels which we analyse in the following. For each temperature
setting we calculate the mean and variances of these pixels. The top left panel of Fig. 4.2
shows the sorted mean values of those 1000 pixels over the 200 frames recorded at 20◦C.
Using this sorting of the pixels we show in the top row panel the corresponding mean values
for the other temperatures and in the bottom panel (again with the same ordering as the
top left panel) the variances. First of all we observe that the variances increase with the
mean pixel values. Also we see that for different temperatures the same pixels exhibit a
large mean and variance. Furthermore, we observe that for lower temperatures the means
and variances decrease.

4.3 Theory

For notational simplicity, the recorded image y, the dark frame d, and the true image x are
column vectors of the same lengths. The entries are denoted by subscripts, i.e. yi, di, and
xi.

Maximum likelihood estimator. Theoretically, the pixel values of a dark frame d should be
modelled with a Poisson distribution, e.g . [115]. This would imply that for the correct (ISO-
dependent) scaling of the dark frames their pixel-wise mean and variance should coincide.
However, such a scaling factor did not exist for our library of dark frames. For that reason
we model the pixel values of the dark frames with Gaussian distributions for which we can
adjust pixel-wise the mean and variance independently. For simplicity we consider in this
part only dark frames of a fixed temperature. For each pixel di in a dark frame d, we
can estimate its mean vector µ and variance vector σ2 from some large set of dark frames
that have been recorded with a fixed temperature. Modelling the recorded noisy image as
y = x+ d, the negative log likelihood of observing some image y is:

− log p(y|x) =
1

2

∥∥y − x− µ∥∥2
D

+ c (4.1)

=
1

2
(y − x− µ)TD−1(y − x− µ) + c (4.2)

=
∑
i

(yi − xi − µi)2

2σ2
i

+ c (4.3)

where D is the diagonal matrix with the variances σ2 along its diagonal. The constant c
depends only on D but not on y or x. Note that this likelihood models the amount of noise
individually for each pixel location. This is different from most other methods, e.g . [31],
who assume a global value for the variance. Methods that allow different amounts of noise
in different locations of the image, usually estimate that amount from the noisy image [70].
Instead, we determine the noise distribution from a library of dark frames.

The maximum likelihood estimate of x is equal to the difference of y and µ, because
setting x = y − µ minimizes − log p(y|x). We will denote this approach by DF-ML.

Maximum a posteriori estimator. The state of the art denoising methods have successfully
introduced priors for natural images, e.g . [127]. Unfortunately, these priors do not apply
to astronomical images as we will see in the experimental section. Instead we employ a
generalization of a simple image prior used by Gomez-Rodriguez et al . [45] which is based
on the idea that an astronomical image should be smooth and not grainy, i.e. the prior
assumes that neighboring pixels should have similar values,

− log p(x) = λ
1

|Ni|
∑
j∈Ni

|xi − xj |p + c, (4.4)
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where c is a constant independent of x, and Ni are the indices of the eight neighbors of pixel
i. In case the camera has a color filter array (CFA), the set of neighbors refers to the closest
pixels on the same color channel. Gomez-Rodriguez et al . [45] applied this prior for p = 2.
However, in our experiments it turned out that we get the best results for p = 1.4. The
factor λ depends on the inverse variance of the image prior, i.e. it controls to which degree
a pixel can be different from its neighbors. For the maximum a posteriori estimator, λ is
a hyper parameter which controls the trade-off between the image prior and the likelihood.
Throughout all reported experiments it was fixed to λ = 100. This value was determined
on artificial training images.

Together with the likelihood we can write down the posterior distribution for x,

− log p(x|y) = − log p(y|x)− log p(x) + c, (4.5)

where c is again a constant independent of x and y. To determine the maximum a posteriori
estimator, we have to minimize the negative log-likelihood − log p(x|y) in x. For this, we
initialize x with its maximum likelihood estimate and proceed with gradient descent steps
minimizing the negative log posterior− log p(x|y) in x. We employ an early stopping strategy
to avoid over-smoothing. In the following, we denote this method by DF-MAPp.

4.4 Experiments

4.4.1 Artificial stars with ground truth

To evaluate our method, we create artificial stars in a dark sky by employing a black surface
containing small holes through which dim light shines. We obtain a low-noise ground truth
image by the following procedure: we take 200 photos with a camera (pco.2000, image
sensor KAI-4021, cooled down to −25◦C) and average the resulting images to reduce the
noise. From the resulting image, we subtract the average of 200 dark-frames recorded with
the same chip temperature and with the same exposure times. The exposure time of all
images is 10 seconds. Besides the ground truth image, we take also 100 noisy test images
at 10◦C chip temperature. The images are shot in very low light conditions, resulting in
noticeable noise, see Fig. 4.3. Our goal is to recover the clean image as well as possible,
given a single noisy image.

To compare a reconstructed image with the ground truth image, we calculate the root
mean squared error (RMSE) between the ground truth image x∗ and the reconstructed

image x, defined as RMSE(x∗, x) =
√

1
n

∑n
i=1(x∗i − xi)2, where n is the number of pixels in

the image.
As competitors to our method we apply state-of-the-art methods for image denoising:

BM3D [25], BLS-GSM [94], Bilateral filtering [117], Fields of Experts (FoE) [100] and
dictionary-based denoising with an overcomplete DCT dictionary (DCT) [31]. All those
methods are initialized with the maximum likelihood solution, i.e. with the difference be-
tween the noisy frame and the mean dark-frame. We then apply the various denoising
algorithms. Usually, these denoising algorithms require a parameter describing the standard
deviation of the noise present in the noisy image and it is assumed that this standard devi-
ation is the same for each pixel in the image. We set this parameter value to be the average
of all σis, which yields good results in practice.

A method that is tailored for astronomical images is the method proposed by Gomez-
Rodriguez et al . [45], which creates an artificial dark-frame as a convex combination of
available dark-frames. The method—called QP in the following—attempts to minimize the
same image penalty function as we do (with p = 2) on a small selection of pixels (so-
called “evaluation points”), which leads to a tractable quadratic programming problem.
Following [45], we apply their method using 1000 evaluation points. We use two different
settings regarding the library of dark-frames: once we use 160 dark-frames, all recorded with
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noisy

ground truth DF-ML BM3D [25] BM3D [25], by Foi

BLS-GSM [94] wiener2 Bilat.Filt.[117] FoE [100]

DCT [31] QP [45] DF-MAP2 DF-MAP1.4

(our method) (our method)

Figure 4.3: The results obtained by denoising using various methods.
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10 second exposure time but with temperatures ranging from −25◦C to 10◦C (20 frames per
temperature, using 5◦C increments). In a second setting, we use 200 dark-frames recorded
with 10 second exposure time and the temperature matching the temperature with which
the image was taken.

The method that only subtracts the mean dark-frame, corresponding to the maximum
likelihood estimate, is denoted by DF-ML. The results of our proposed maximum a posteriori
methods are denoted by DF-MAPp.

denoising method mean RMSE
no denoising 416.3
BM3D [25] 103.7
BLS-GSM [94] 36.7
QP (all temperatures) [45] 35.2
DF-ML (mean dark frame) 32.1
QP (only one temperature) [45] 29.6
DF-MAP2 (our method) 27.8
Matlab’s wiener2 27.5
Bilateral Filtering [117] 27.4
Fields of Experts [100] 27.2
DCT [31] 26.9
BM3D [25], by Foi 21.6
DF-MAP1.4 (our method) 20.0

Table 4.1: Average results obtained by denoising 100 noisy test images with different
methods

The results in Tab. 4.1 show that the state-of-the-art denoising methods are not suitable
for astronomical images. E.g ., BM3D and BLS-GSM yield results that are worse than those
obtained by removing the mean dark-frame from the noisy image. Since the mean dark-
frame subtracted image is provided as input, one can say that these methods deteriorate the
results. For BM3D, we were informed by one of the authors of the BM3D paper (Alessandro
Foi) that the poor results might be due to a software bug and were provided with a result
achieved with a corrected toolbox (“BM3D, by Foi” in Tab. 4.1). We thank Alessandro Foi
for helping us with the BM3D toolbox. Fig. 4.3 compares the results obtained by denoising
strategies we have tried. The result of BLS-GSM contains artifacts that resemble the “ring-
ing” phenomenon. We presume that BLS-GSM makes assumptions about images which are
violated by the images we are trying to denoise. Further evidence is that simpler denoising
methods, such as Matlab’s wiener2 function and bilateral filtering [117] work relatively well:
these methods make fewer assumptions about the statistics of images. Another method that
works well is the dictionary-based denoising method with an overcomplete DCT Dictionary
[31]. The method assumes that patches in an image can be well represented using a sparse
combination of predefined patches, which appears to work well for astronomical images.

If we set the parameter p of our image prior to 2, we use the same image penalty function
as the method proposed by Gomez-Rodriguez et al . [45]. Yet, our results are better. This
is presumably due to the fact that our model is more flexible to repair individual pixels,
whereas Gomez-Rodriguez et al . are forced to subtract a convex combination of dark frames.

Modifying the image prior by setting p = 1.4, the results obtained with our method are
even better (last line in Tab. 4.1). It is not clear if the method proposed by Gomez-Rodriguez
et al . could be modified to use a different image prior.

4.4.2 Real astronomical images

Orion constellation. To test our approach under real-world conditions we applied it to a
noisy image of part of the constellation Orion. The image was taken by a Canon EOS 5D
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with 60 seconds exposure time and ISO 1600 and Canon lens 35/1.4 at aperture f/2.8. To
minimize motion blur due to celestial movements a tracking mount was used. Demosaicing
and gamma correction was performed using dcraw [23].

In addition to the noisy astronomical image, we had a library of dark-frames recorded
with the same camera. We had no control over the temperature of the image sensor. The
library of dark-frames was composed of 16 darkframes at exposure time 10 seconds, 32
at exposure time 60 seconds, 32 at exposure time 120 seconds as well as 16 bias-frames
(dark-frames with the shortest possible exposure time).

Fig. 4.4 shows the results of different denoising approaches for an enlarged cropped
version (800 × 1000 pixels). The presented images were reconstructed by first denoising
the raw images, then demosaicing with dcraw [23] and finally gamma correction. Because
BLS-GSM is not meant to be applied to raw images, we apply it separately to the four
color channels. The approach proposed by Gomez-Rodriguez et al . [45] and our method
are also able to treat raw images: the image prior is not calculated by considering a pixel’s
immediate neighbors, but rather the closest neighbors on the same color channel.

Subtracting the mean dark-frame, i.e. the maximum likelihood estimate, does not signif-
icantly improve the visual quality of the image. In fact, artifacts are introduced: some pixels
seem to be too dark. A possible explanation for this phenomenon would be if the camera’s
sensor was warmer at the time the image was recorded than at the time the dark-frames
were recorded. Dark-current increases with increasing temperature, so the dark-current in
the image would be weaker than in the dark-frames.

Applying BLS-GSM to the dark-frame subtracted image provides little improvement
over the dark-frame subtracted image. We found the results obtained by BLS-GSM to be
representative of results obtained with the other state-of-the-art image denoising methods.

Using our method with p = 2 also did not create satisfactory results. Visually, it is not
clear whether using our method with p = 2 provides better results than the mean dark-frame
subtracted result or using BLS-GSM.

We apply the approach proposed by Gomez-Rodriguez et al . [45] using all dark-frames
contained in our library. The result obtained in this way is visually better than both the
original noisy image and the mean dark-frame subtracted image. The dark pixels that are
present in the mean dark-frame subtracted image do not exist in the image denoised by the
method proposed by Gomez-Rodriguez et al . It is possible that the method was able to
select dark-frames that were recorded at a matching sensor temperature. However, noise is
still present in the image. The background looks grainy.

For our method, we estimate the pixel means µ and variances σ2 using the dark-frames
that have been recorded with an exposure time of 60 seconds. Ideally, we would have es-
timated µ and σ2 on dark-frames whose recording temperature matches that of the noisy
image. Nonetheless, the result obtained by our method is smoother than any of the pre-
viously applied methods. Our method was able to strongly reduce the graininess that was
visible in all previous results. Our method provides a very smooth background, yet does not
cause even faint stars to disappear. Also, the visual quality of the nebula is not deteriorated.

Milky way. Finally, we present results obtained on an image of the Milky Way, recorded at
an ISO setting of 3200, with a Canon EOS 5D, see top panel of Fig. 4.5. For this image we
had only six dark-frames of matching settings available to us. We use these six dark-frames
for the method proposed by Gomez-Rodriguez et al . as well as for our method. On the left
and right of the images we provide more detailed views of parts of the image. The red inset
contains four hot pixels in the noisy image (the bright green pixels), which were successfully
removed by both the method proposed by Gomez-Rodriguez et al . and ours. However, the
result obtained by our method appears much less grainy, which makes individual stars more
discernible.
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Recorded noisy image DF-ML

BLS-GSM [94] DF-MAP2

QP [45] DF-MAP1.4

Figure 4.4: Comparison of various denoising techniques on a small section of the image of
the constellation Orion.
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Recorded noisy image

QP [45]

DF-MAP1.4 (our method)

Figure 4.5: Comparison of QP [45] and DF-MAP1.4 (our method) on a real astronomical
image (taken with a Canon EOS 5D at ISO 3200 and 60 sec. exposure time with Zeiss
Distagon 28mm lens at f/2.8, courtesy of Gomez-Rodriguez, Kober, and Schölkopf [45]).
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4.5 Conclusions

We presented a new method for denoising astronomical images containing dark current
noise. The method relies on a probabilistic description of a given camera’s dark-current, as
well as an image prior appropriate for astronomical images. Our method treats every pixel
of a camera’s sensor individually. Our image prior is similar to the one used by Gomez-
Rodriguez et al . [45] and attempts to capture the roughness or graininess of an image.
However, different from [45] we are not limited to quadratic functions, which allows us to
use an image prior that is better suited for astronomical images, and moreover, we are not
restricted to subtracting a convex combination of dark frames.

In laboratory conditions, we have shown that our method provides better results than
state-of-the-art denoising methods that are intended for use on natural images. Our method
also outperformed the recent method by Gomez-Rodriguez et al ., which is designed to de-
noise astronomical images.

On real astronomical images, we have shown that our method provides visually more
appealing results than other methods. Images appear much less grainy after applying our
method than when applying other methods. Fine image structure such as faint stars and
nebula are preserved. It should be added that our evaluation was on single images, which is
the hardest case in the sense that their noise is higher than for averages over several images
as often used in astrophotography. Moreover, some of the graininess that we remove can
also be removed by using a more sophisticated image acquisition pipeline including dithering
(combining multiple exposures offset with respect to each other). We would expect that this
would further improve our results, but make the difference to the other methods smaller.

Our method is limited in that we assume that appropriate dark-frames are provided with
the image to be denoised. We assume the exposure time, ISO setting and temperature of
the camera’s sensor to approximately match the conditions at which the noisy image was
recorded. The method proposed by Gomez-Rodriguez et al . overcomes this difficulty: given a
library of dark-frames recorded under varying conditions, the optimization problem selects
dark-frames that were recorded under the same conditions as the image. It is therefore
conceivable to combine the two methods: the quadratic optimization problem described by
Gomez-Rodriguez et al . could be used to select a set of dark-frames from a larger library.
Our method would then use the selected dark-frames to infer an appropriate probabilistic
dark-current model for the denoising process.
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5

Image denoising with multi-layer perceptrons

Chapter abstract Image denoising can be described as the problem of mapping from a noisy
image to a noise-free image. The best currently available denoising methods approximate
this mapping with cleverly engineered algorithms. In this work we attempt to learn this
mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We
will show that by training on large image databases we are able to outperform the current
state-of-the-art image denoising methods. In addition, our method achieves results that are
superior to one type of theoretical bound and goes a large way toward closing the gap with a
second type of theoretical bound. Our approach is easily adapted to less extensively studied
types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise
and noise resembling stripes, for which we achieve excellent results as well. We will show
that combining a block-matching procedure with MLPs can further improve the results on
certain images. Finally, we show that MLPs can be used to combine the results of several
denoising algorithms, usually delivering results that are superior to the best result in the
combination. This approach gets still closer to closing the gap with theoretical bounds.

The material of this chapter is based on the following publications:

[15] H.C. Burger, C.J. Schuler, and S. Harmeling. Image denoising: Can plain neural
networks compete with BM3D? Conference on Computer Vision and Pattern Recognition
(CVPR). 2012.

[12] H.C. Burger, C.J. Schuler, and S. Harmeling. Image denoising with multi-layer per-
ceptrons, part 1: comparison with existing algorithms and with bounds. Submitted to a
journal, available at http://arxiv.org/abs/1211.1544

The following publication is partially included in this chapter:

[16] H.C. Burger, C.J. Schuler, and S. Harmeling. Learning how to combine internal and
external denoising methods. Submitted to a conference.
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5.1 Introduction

Noisy castle Clean castle

Figure 5.1: The goal of image denoising is to find a clean version of the noisy input image.

Images are invariably corrupted by some degree of noise. The strength and type of noise
corrupting the image depends on the imaging process. In scientific imaging, one sometimes
needs to take images in a low photon-count setting, in which case the images are corrupted
by mixed Poisson-Gaussian noise [71]. Magnetic resonance images are usually corrupted by
noise distributed according to the Rice disitribution [46]. For natural images captured by a
digital camera, the noise is usually assumed to be additive, white and Gaussian-distributed
(AWG noise), see for example [31, 25].

An image denoising procedure takes a noisy image as input and estimates an image
where the noise has been reduced. Numerous and diverse approaches exist: Some selectively
smooth parts of a noisy image [117, 126]. Other methods rely on the careful shrinkage of
wavelet coefficients [111, 94]. A conceptually similar approach is to denoise image patches
by trying to approximate noisy patches using a sparse linear combination of elements of
a learned dictionary [1, 31]. BM3D [25] is a very successful approach to denoising and is
often considered state-of-the art. The approach does not rely on a probabilistic image prior
but rather exploits the fact that images are often self-similar: A given patch in an image is
likely to be found elsewhere in the same image. In BM3D, several similar-looking patches
of a noisy image are denoised simultaneously and collaboratively : Each noisy patch helps
to denoise the other noisy patches. The algorithm does not rely on learning from a large
dataset of natural images; excellent denoising results are achieved through the design of the
algorithm. While BM3D is a well-engineered algorithm, could we also automatically learn
an image denoising procedure purely from training examples consisting of pairs of noisy and
noise-free patches?

Denoising as a function: In image denoising, one is given a noisy version of a clean image,
where the noise is for instance i.i.d. Gaussian distributed with known variance (AWG noise).
The goal is to find the clean image, given only the noisy image. We think of denoising as a
function that maps a noisy image to a cleaner version of that image. However, the complexity
of a mapping from images to images is large, so in practice we chop the image into possibly
overlapping patches and learn a mapping from a noisy patch to a clean patch. To denoise
a given image, all image patches are denoised separately by that map. The denoised image
patches are then combined into a denoised image.

The size of the patches affects the quality of the denoising function. If the patches are
small and the noise level is high, many clean patches are a potential explanation for a given
noisy patch. In other words, adding noise to a clean patch is not injective and therefore
also not invertible. It is therefore almost impossible to find a perfect denoising function.
Lowering the noise and increasing the size of the patches alleviates this problem: Fewer
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clean patches are a potential explanation for a given noisy image [68]. At least in theory,
better denoising results are therefore achievable with large patches than with small patches.

In practice, the mapping from noisy to clean patches cannot be expressed using a simple
formula. However, one can easily generate samples: Adding noise to a patch creates an
argument-value pair, where the noisy patch is the argument of the function and the noise-
free patch is the value of the function.

The aim of this chapter is to learn the denoising function. For this, we require a model.
The choice of the model is influenced by the function to approximate. Complicated functions
require models with high capacity, whereas simple functions can be approximated using a
model with low capacity. The dimensionality of the problem, which is defined by the size of
the patches, is one measure of the difficulty of approximation. One should therefore expect
that models with more capacity are required when large image patches are used. A higher
dimensionality also usually implies that more training data is required to learn the model,
unless the problem is intrinsically of low dimension.

We see that a trade-off is necessary: Very small patches lead to a function that is easily
modeled, but to bad denoising results. Very large patches potentially lead to better denoising
results, but the function might be difficult to model.

This chapter will show that it is indeed possible to achieve state-of-the-art denoising
performance with a plain multi layer perceptron (MLP) that maps noisy patches onto noise-
free ones. This is possible because the following factors are combined:

• The capacity of the MLP is chosen large enough, meaning that it consists of enough
hidden layers with sufficiently many hidden units.

• The patch size is chosen large enough, so that a patch contains enough information to
recover a noise-free version. This is in agreement with previous findings [68].

• The chosen training set is large enough. Training examples are generated on the fly
by corrupting noise-free patches with noise.

Training high capacity MLPs with large training sets is feasible using modern Graphics
Processing Units (GPUs). Chapter 6 contains a detailed analysis of the trade-offs during
training.

Contributions: We present a patch-based denoising algorithm that is learned on a large
dataset with a plain neural network. Additional contributions of this chapter are the fol-
lowing.

1. We show that the state-of-the-art is improved on AWG noise. This is done using a
thorough evaluation on 2500 test images,

2. excellent results are obtained on mixed Poisson-Gaussian noise, JPEG artifacts, salt-
and-pepper noise and noise resembling stripes, and

3. We present a novel “block-matching” multi-layer perceptron and discuss its strengths
and weaknesses.

4. We relate our results to recent theoretical work on the limits of denoising [22, 68, 69].
We will show that two of the bounds described in these papers cannot be regarded as
hard limits. We make important steps towards reaching the third proposed bound.

We have previously shown that MLPs can achieve outstanding image denoising results [15].
Here, we present significantly improved results compared to our previous work as well as
more thorough experiments.
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5.2 Related work

The problem of removing noise from natural images has been extensively studied, so methods
to denoise natural images are numerous and diverse. Estrada et al . [34] classify denoising
algorithms into three categories:

1. The first class of algorithms rely on smoothing parts of the noisy image [101, 126, 117]
with the aim of “smoothing out” the noise while preserving image details.

2. The second class of algorithms exploits the fact that different patches in the same
image are often similar in appearance [25, 10].

3. The third class of denoising algorithms exploit learned image statistics. A natural
image model is typically learned on a noise-free training set (such as the Berkeley
segmentation dataset) and then exploited to denoise images [100, 127, 57]. In some
cases, denoising might involve the careful shrinkage of coefficients. For example [111,
21, 91, 94] involve shrinkage of wavelet coefficients. Other methods denoise small
images patches by representing them as sparse linear combinations of elements of a
learned dictionary [31, 75, 74].

Neural networks: Neural networks belong to the category relying on learned image statis-
tics. They have already been used to denoise images [57] and belong in the category of
learning-based approaches. The networks commonly used are of a special type, known as
convolutional neural networks (CNNs) [63], which have been shown to be effective for various
tasks such as hand-written digit and traffic sign recognition [108]. CNNs exhibit a structure
(local receptive fields) specifically designed for image data. This allows for a reduction of
the number of parameters compared to plain multi layer perceptrons while still providing
good results. This is useful when the amount of training data is small. On the other hand,
multi layer perceptrons are potentially more powerful than CNNs: MLPs can be thought
of as universal function approximators [24, 56, 38, 67], whereas CNNs restrict the class of
possible learned functions.

A different kind of neural network with a special architecture (containing a sparsifying
logistic) is used in [96] to denoise image patches. A small training set is used. Results are
reported for strong levels of noise. It has also been attempted to denoise images by applying
multi layer perceptrons on wavelet coefficients [131]. The use of wavelet bases can be seen
as an attempt to incorporate prior knowledge about images.

Denoising auto-encoders [120] also use the idea of using neural networks for denoising.
Denoising auto-encoders are a special type of neural network which can be trained in an
unsupervised fashion. Interesting features are learned by the units in the hidden layers.
For this, one exploits the fact that training pairs can be generated cheaply, by somehow
corrupting (such as by adding noise to) the input. However, the goal of these networks is
not to achieve state-of-the-art results in terms of denoising performance, but rather to learn
representations of data that are useful for other tasks. Another difference is that typically,
the noise used is not AWG noise, but salt-and-pepper noise or similar forms of noise which
“occlude” part of the input. Denoising auto-encoders are learned layer-wise and then stacked,
which has become the standard approach to deep learning [53]. The noise is applied on the
output of the previously learned layer. This is different from our approach, in which the
noise is always applied on the input patch only and all layers are learned simultaneously.

Our approach is reminiscent of deep learning approaches because we also employ several
hidden layers. However, the goal of deep learning is to learn several levels of representations,
corresponding to a hiearchy of features, see [6] for an overview. In this work we are mainly
interested in image denoising results.
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Innovations in this work: Most methods based on neural networks make assumptions about
natural images. Instead, we show that state-of-the-art results can be obtained by imposing
no such assumptions, but by relying on a pure learning approach.

5.3 Learning to denoise

In Section 5.1, we defined the denoising problem as learning the mapping from a noisy patch
to a cleaner patch. For this, we require a model. In principle, different models could be
used, but we will use MLPs for that purpose. We chose MLPs over other models because of
their ability to handle large datasets.

5.3.1 Multi layer perceptrons (MLPs)

input neuron 1

input neuron 2

input neuron 3

sum tanh

first hidden layer

input layer

output layer

sum
weights weights

Figure 5.2: A graphical representation of a (3,4,2)-MLP.

A multi layer perceptron (MLP) is a nonlinear function that maps vector-valued input
via several hidden layers to vector-valued output. For instance, an MLP with two hidden
layers can be written as

f(x) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1x)). (5.1)

The weight matrices W1,W2,W3 and vector-valued biases b1, b2, b3 parameterize the MLP,
the function tanh operates component-wise. The architecture of an MLP is defined by the
number of hidden layers and by the layer sizes. For instance, a (256,2000,1000,10)-MLP
has two hidden layers. The input layer is 256-dimensional, i.e. x ∈ <256. The vector v1 =
tanh(b1+W1x) of the first hidden layer is 2000-dimensional, the vector v2 = tanh(b2+W2v1)
of the second hidden layer is 1000-dimensional, and the vector f(x) of the output layer is
10-dimensional. Commonly, an MLP is also called feed-forward neural network. MLPs can
also be represented graphically, see Figure 5.2. All our MLPs are fully connected, meaning
that the weight matrices Wi are dense. One could also imagine MLPs which are not fully
connected, using sparse weight matrices. Sparsely connected MLPs have the advantage of
being potentially computationally easier to train and evaluate.

MLPs belong to the class of parametric models, the parameters being estimated during
learning. However, the number of parameters in MLPs is often so large that they are
extremely flexible.

5.3.2 Training MLPs for image denoising

To train an MLP that maps noisy image patches onto clean image patches where the noise
is reduced or even removed, we estimate the parameters by training on pairs of noisy and
clean image patches using stochastic gradient descent [64].

More precisely, we randomly pick a clean patch x from an image dataset and generate
a corresponding noisy patch y by corrupting x with noise, for instance with additive white
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Gaussian (AWG) noise. We then feed the noisy patch x into the MLP to compute f(x),
representing an estimate of the clean patch x. The MLP parameters are then updated
by the backpropagation algorithm [102] minimizing the squared error between the mapped
noisy patch f(x) and the clean patch y, i.e. minimizing pixel-wise (f(x) − y)2. We choose
to minimize the mean squared error since it is monotonically related to the PSNR, which is
the most commonly used measure of image quality. Thus minimizing the squared error will
maximize PSNR values.

To make backpropagation efficient, we apply various common neural network tricks [64]:

1. Data normalization: The pixel values are transformed to have approximately mean
zero and variance close to one. More precisely, assuming pixel values between 0 and
1, we subtract 0.5 and multiply by 0.2.

2. Weight initialization: We use the “normalized initialization” described by Glorot et
al . [7]. The weights are sampled from a uniform distribution:

w ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, (5.2)

where nj and nj+1 are the number of neurons in the input side and output side of the
layer, respectively. Combined with the first trick, this ensures that both the linear and
the non-linear parts of the sigmoid function are reached.

3. Learning rate division: In each layer, we divide the learning rate by N , the number of
input units of that layer. This allows us to change the number of hidden units without
modifying the learning rate.

The basic learning rate was set to 0.1 for most experiments. The training procedure is
discussed in more detail in Chapter 6.

5.3.3 Number of hidden layers

The number hidden layers as well as the number of neurons per hidden layer control the
capacity of the model. No more than a single hidden layer is needed to approximate any
function, provided that layer contains a sufficient number of neurons [24, 56, 38, 67]. How-
ever, functions exist that can be represented compactly with a neural network with k hidden
layers but that would require exponential size (with respect to input size) networks of depth
k − 1 [48, 61]. Therefore, in practice it is often more convenient to use a larger number
of hidden layers with fewer hidden units each. The trade-off between a larger number of
hidden layers and a larger number of hidden units is discussed in Chapter 6.

5.3.4 Applying MLPs for image denoising

To denoise images, we decompose a given noisy image into overlapping patches. We then
normalize the patches by subtracting 0.5 and dividing by 0.2, denoise each patch separately
and perform the inverse normalization (multiply with 0.2, add 0.5) on the denoised patches.
The denoised image is obtained by placing the denoised patches at the locations of their
noisy counterparts, then averaging on the overlapping regions. We found that we could
improve results slightly by weighting the denoised patches with a Gaussian window. Also,
instead of using all possible overlapping patches (stride size 1, or patch offset 1), we found
that results were almost equally good by using every third sliding-window patch (stride size
3), while decreasing computation time by a factor of 9. Using a stride size of 3, we were able
to denoise images of size 350× 500 pixels in approximately one minute (on CPU), which is
slower than BM3D [25], but much faster than KSVD [1] and NLSC [74] and also faster than
EPLL [132].
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5.3.5 Efficient implementation on GPU

The computationally most intensive operations in an MLP are the matrix-vector multi-
plications. For these operations Graphics Processing Units (GPUs) are better suited than
Central Processing Units (CPUs) because of their ability to efficiently parallelize operations.
For this reason we implemented our MLP on a GPU. We used nVidia’s C2050 GPU and
achieved a speed-up factor of more than one order of magnitude compared to an implemen-
tation on a quad-core CPU. This speed-up is a crucial factor, allowing us to run larger-scale
experiments. We describe training for various setups in Chapter 6.

5.4 Experimental setup

We performed all our experiments on gray-scale images. These were obtained from color
images with matlab’s rbg2gray function. Since it is unlikely that two noise samples are
identical, the amount of training data is effectively infinite, no matter which dataset is used.
However, the number of uncorrupted patches is restricted by the size of the dataset. Note
that the MLPs could be also trained on color images, possibly exploiting structure between
the different color channels. However, in this publication we focus on the gray-scale case.

Training data: For almost all our experiments, we used images from the imagenet dataset
[29]. Imagenet is a hiearchically organized image database, in which each node of the hier-
archy is depicted by hundreds and thousands of images. We completely disregard all labels
provided with the dataset. We used 1846296 images from 2500 different object categories.
We performed no pre-processing other than the transform to grey-scale on the training
images.

Test data: We define six different test sets to evaluate our approach:

1. standard test images: This set of 11 images contains standard images, such as “Lena”
and “Barbara”, that have been used to evaluate other denoising algorithms [25].

2. Berkeley BSDS500: We used all 500 images of this dataset as a test set. Subsets of
this dataset have been used as a training set for other methods such as FoE [100] and
EPLL [132].

3. Pascal VOC 2007: We randomly selected 500 images from the Pascal VOC 2007 test
set [35].

4. Pascal VOC 2011: We randomly selected 500 images from the Pascal VOC 2011
training set.

5. McGill: We randomly selected 500 images from the McGill dataset [88].

6. ImageNet: We randomly selected 500 images from the ImageNet dataset not present
in the training set. We also used object categories not used in the training set.

We selected dataset 1) because it has become a standard test dataset, see [25] and [74].
The images contained in it are well-known and diverse: Image “Barbara” contains a lot of
regular structure, whereas image “Man” contains more irregular structure and image “Lena”
contains smooth areas. We chose to make a more thorough comparison, which is why we
evaluated our approach as well as competing algorithms on five larger test sets. We chose
five different image sets of 500 images instead of one set of 2500 images in order to see if the
performance of methods is significantly affected by the choice of the dataset. EPLL [132] is
trained on a subset of dataset 2), NLSC [74] is trained on a subset of 4) and our method is
trained on images extracted from the same larger dataset as 6).
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Types of noise: For most of our experiments, we used AWG noise with σ = 25. However,
we also show results for other noise levels. Finally, we trained MLPs to remove mixed
Gaussian-Poisson noise, JPEG artifacts, salt and pepper noise and noise that resembles
stripes.

5.5 Results: comparison with existing algorithms

In this section, we present results achieved with an MLP on AWG noise with five different
noise levels. We also present results achieved on less well-studied forms of noise. We present
in more detail what steps we took to achieve these results in Chapter 6.

We compare against the following algorithms:

1. KSVD [1]: This is a dictionary-based method where the dictionary is adapted to the
noisy image at hand. A noisy patch is denoised by approximating it with a sparse
linear combination of dictionary elements.

2. EPLL [132]: The distribution of image patches is described by a mixture of Gaussians.
The method presents a novel approach to denoising whole images based on patch-based
priors. The method was shown to be sometimes superior to BM3D [25], which is often
considered the state-of-the-art in image denoising.

3. BM3D [25]: The method does not explicitly use an image prior, but rather exploits
the fact that images often contain self-similarities. Concretely, the method relies on
a “block matching” procedure: Patches within the noisy image that are similar to
a reference patch are denoised together. This approach has been shown to be very
effective and is often considered the state-of-the-art in image denoising.

4. NLSC [74]: This is a dictionary-based method which (like KSVD) adapts the dictionary
to the noisy image at hand. In addition, the method exploits image self-similarities,
using a block-matching approach similar to BM3D. This method also achieves excellent
results.

We choose these algorithms for our comparison because they achieve good results. BM3D
and NLSC are usually referred to as the state-of-the-art in image denoising. Of the four
algorithms, KSVD achieves the least impressive results, but these are still usually better
than those achieved with BLSGSM [94], which was considered state-of-the-art before the in-
troduction of KSVD. An additional reason for the choice of these algorithms is the diversity
of the approaches. Learning-based approaches are represented through EPLL, whereas engi-
neered approaches that don’t rely on learning are represented by BM3D. Non-local methods
are represented by BM3D and NLSC. Finally, dictionary-based approaches are represented
by KSVD and NLSC.

5.5.1 Detailed comparison on one noise level

We will now compare the results achieved with an MLP to results achieved with other
denoising algorithms on AWG noise with σ = 25. We choose the MLP with architecture
(39 × 39, 3072, 3072, 2559, 2047, 17 × 17) because it delivered the best results. The MLP
was trained for approximately 3.5 · 108 backprops, see Chapter 6 for details.

Comparison on 11 standard test images: Table 5.1 summarizes the comparison of our
approach (MLP) to the four other denoising algorithms. Our approach achieves the best
result on 7 of the 11 test images and is the runner-up on one image. However, our method
is clearly inferior to BM3D and NLSC on images “Barbara” and “House”. These two
images contain a lot of regular structure (see Figure 5.3) and are therefore ideally suited for
algorithms like BM3D and NLSC, which adapt to the noisy image. However, we outperform
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clean image (Barbara) BM3D [25]: 30.67dB MLP: 29.52dB

clean image (004513) BM3D [25]: 38.92dB MLP: 40.57dB

clean image (198054) BM3D [25]: 26.28dB MLP: 27.09dB

Figure 5.3: We outperform BM3D on images with smooth surfaces and non-regular struc-
tures. BM3D outperforms us on images with regular structure. The image “Barbara”
contains a lot of regular structure on the pants as well the table-cloth.
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image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP

Barbara 29.49dB 28.52dB 30.67dB 30.50 dB 29.52dB
Boat 29.24dB 29.64dB 29.86dB 29.86 dB 29.95dB
C.man 28.64dB 29.18dB 29.40dB 29.46 dB 29.60dB
Couple 28.87dB 29.45dB 29.68 dB 29.63dB 29.75dB
F.print 27.24dB 27.11dB 27.72dB 27.63dB 27.67 dB
Hill 29.20dB 29.57dB 29.81 dB 29.80dB 29.84dB
House 32.08dB 32.07dB 32.92 dB 33.08dB 32.52dB
Lena 31.30dB 31.59dB 32.04 dB 31.87dB 32.28dB
Man 29.08dB 29.58dB 29.58dB 29.62 dB 29.85dB
Montage 30.91dB 31.18dB 32.24dB 32.15 dB 31.97dB
Peppers 29.69dB 30.08dB 30.18dB 30.27dB 30.27dB

Table 5.1: Results on 11 standard test images for σ = 25.

KSVD on both of these images even though KSVD is also an algorithm that is well-suited
for these types of images. We also note that we outperform both KSVD and EPLL on every
image.

(a) (b)

Figure 5.4: The MLP outperforms BM3D on image (a). Locations where BM3D is worse
than the MLP on image 198054 are highlighted (b).

Comparison on larger test sets We now compare our approach to EPLL, BM3D and
NLSC on the five larger test sets defined in section 5.4. Each dataset contains 500 images,
giving us a total of 2500 test images.

• Comparison to EPLL: We outperform EPLL on 2487 (99.48%) of the 2500 images,
see Figure 5.5. The average improvement over all datasets is 0.35dB. On the VOC
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Figure 5.5: Results compared to EPLL (top), BM3D (middle) and NLSC (bottom) on five
datasets of 500 images, σ = 25.
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2007 test set, we outperform EPLL on every image. The best average improvement
over EPLL was on the subset of the ImageNet dataset (0.39dB), whereas the smallest
improvement was on the Berkeley dataset (0.27dB). This is perhaps a reflection of the
fact that EPLL was trained on a subset of the Berkeley dataset, whereas our approach
was trained on the ImageNet dataset. For EPLL, the test set contains the training
set. For our method, this is not the case, but it is plausible that the ImageNet dataset
contains some form of regularity across the whole dataset.

• Comparison to BM3D: We outperform BM3D on 2304 (92.16%) of the 2500 images,
see Figure 5.5. The average improvement over all datasets is 0.29dB. The largest aver-
age improvement was on the Berkeley dataset (0.34dB), whereas the smallest average
improvement was on the McGill dataset (0.23dB).

Figure 5.4 highlights the areas of the image in the lower row of Figure 5.3 where
BM3D creates larger errors than the MLP. We see that it is indeed in the areas with
complicated structures (the hair and the shirt) that the MLP has an advantage over
BM3D.

• Comparison to NLSC: We outperform NLSC on 2003 (80.12%) of the 2500 images,
see Figure 5.5. The average improvement over all datasets was 0.16dB. The largest
average improvements were on the ImageNet subset and Berkeley dataset (0.21dB),
whereas the smallest average improvements were on the VOC 2011 training set and
VOC 2007 test set (0.10dB and 0.11dB respectively). This is perhaps a reflection of
the fact that the initial dictionary of NLSC was trained on a subset of the VOC 2007
dataset [74].

In summary, our method outperforms state-of-the-art denoising algorithms for AWG
noise with σ = 25. The improvement is consistent across datasets. We notice that our
method tends to outperform BM3D on images with smooth areas such as the sky and on
images which contain irregular structure, such as the hair of the woman in Figure 5.3. The
fact that our method performs well on smooth surfaces can probably be explained by the fact
that our method uses large input patches: This allows our method to handle low frequency
noise. Methods using smaller patches (such as BM3D) are blind to lower frequencies. The
fact that our method performs better than BM3D on images with irregular structures is
explained by the block-matching approach employed by BM3D: The method cannot find
similar patches in images with irregular textures. Further examples of images where our
method outperforms BM3D are shown in Figure 5.6 and where BM3D outperforms our
method in Figure 5.7.

5.5.2 Comparison on different noise variances

We have seen that our method achieves state-of-the-art results on AWG noise with σ = 25.
We now evaluate our approach on other noise levels. We use σ = 10 (low noise), σ = 50
(high noise), σ = 75 (very high noise) and σ = 170 (extremely high noise) for this purpose.
We describe in Chapter 6 which architectures and patch sizes are used for the various noise
levels.

Comparison on 11 standard test images: Table 5.2 compares our method against KSVD,
EPLL, BM3D and NLSC on the test set of 11 standard test images for σ = 10. Our method
outperforms KSVD on ten images, EPLL on all images, BM3D on four images and NLSC
on three images. Our method achieves the best result of all algorithms on two images. Like
for σ = 25, BM3D and NLSC perform particularly well for images “Barbara” and “House”.

Table 5.3 performs the same comparison for σ = 50. Our method outperforms all others
on 8 of the 11 images. BM3D and NLSC still perform significantly better on the image
“Barbara”. We outperform KSVD and EPLL on every image.
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image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP

Barbara 34.40dB 33.59dB 34.96dB 34.96dB 34.07dB
Boat 33.65dB 33.64dB 33.89 dB 34.02dB 33.85dB
C.man 33.66dB 33.99dB 34.08dB 34.15dB 34.13 dB
Couple 33.51dB 33.82dB 34.02dB 33.98 dB 33.89dB
F.print 32.39dB 32.12dB 32.46dB 32.57 dB 32.59dB
Hill 33.37dB 33.49dB 33.60 dB 33.66dB 33.59dB
House 35.94dB 35.74dB 36.71 dB 36.90dB 35.94dB
Lena 35.46dB 35.56dB 35.92dB 35.85dB 35.88 dB
Man 33.53dB 33.94dB 33.97dB 34.06 dB 34.10dB
Montage 35.91dB 36.45dB 37.37dB 37.24 dB 36.51dB
Peppers 34.20dB 34.54dB 34.69dB 34.78dB 34.72 dB

Table 5.2: Results on 11 standard test images for σ = 10.

image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP

Barbara 25.22dB 24.83dB 27.21dB 27.13 dB 25.37dB
Boat 25.90dB 26.59dB 26.72dB 26.73 dB 27.02dB
C.man 25.42dB 26.05dB 26.11dB 26.36 dB 26.42dB
Couple 25.40dB 26.24dB 26.43 dB 26.33dB 26.71dB
F.print 23.24dB 23.59dB 24.53dB 24.25 dB 24.23dB
Hill 26.14dB 26.90dB 27.14 dB 27.05dB 27.32dB
House 27.44dB 28.77dB 29.71 dB 29.88dB 29.52dB
Lena 27.43dB 28.39dB 28.99 dB 28.88dB 29.34dB
Man 25.83dB 26.68dB 26.76 dB 26.71dB 27.08dB
Montage 26.42dB 27.13dB 27.69dB 28.02 dB 28.07dB
Peppers 25.91dB 26.64dB 26.69dB 26.73 dB 26.74dB

Table 5.3: Results on 11 standard test images for σ = 50.

image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP

Barbara 22.65dB 22.95dB 25.10dB 25.03 dB 23.48dB
Boat 23.59dB 24.86dB 25.04 dB 24.95dB 25.43dB
C.man 23.04dB 24.19dB 24.37 dB 24.24dB 24.72dB
Couple 23.43dB 24.46dB 24.71 dB 24.48dB 25.09dB
F.print 20.72dB 21.44dB 22.83dB 22.48 dB 22.41dB
Hill 24.21dB 25.42dB 25.60 dB 25.57dB 25.97dB
House 24.53dB 26.69dB 27.46dB 27.64 dB 27.75dB
Lena 24.87dB 26.50dB 27.16dB 27.17 dB 27.66dB
Man 23.76dB 25.07dB 25.29 dB 25.15dB 25.63dB
Montage 23.58dB 24.86dB 25.36 dB 25.20dB 25.93dB
Peppers 23.09dB 24.52dB 24.71 dB 24.46dB 24.87dB

Table 5.4: Results on 11 standard test images for σ = 75.
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MLP vs. BM3D: +0.89dB MLP vs. BM3D: +0.86dB MLP vs. BM3D: +0.86dB

MLP vs. BM3D: +0.84dB MLP vs. BM3D: +0.82dB MLP vs. BM3D: +0.82dB

Figure 5.6: Images where the MLP outperforms BM3D, for σ = 25. The images contain
smooth areas, irregular structures, or both.

image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP

Barbara 18.08dB 20.79dB 19.74dB 20.99 dB 21.37dB
Boat 18.42dB 21.60 dB 20.49dB 21.48dB 22.47dB
C.man 18.00dB 20.48dB 19.65dB 20.50 dB 21.28dB
Couple 18.26dB 21.48 dB 20.39dB 21.29dB 22.16dB
F.print 16.75dB 17.06dB 17.46dB 18.51 dB 18.57dB
Hill 18.69dB 22.63 dB 20.98dB 22.62dB 23.33dB
House 18.20dB 22.52 dB 21.19dB 21.95dB 23.80dB
Lena 18.68dB 22.96dB 21.38dB 23.20 dB 24.24dB
Man 18.49dB 22.10 dB 20.59dB 21.72dB 22.85dB
Montage 17.91dB 20.48 dB 19.69dB 20.40dB 20.93dB
Peppers 17.47dB 20.26 dB 19.58dB 19.53dB 20.81dB

Table 5.5: Results on 11 standard test images for σ = 170.

For σ = 75, our method outperforms all others on 9 of the 11 images, see Table 5.4.
BM3D and NLSC still perform significantly better on the image “Barbara”.

For σ = 170, our method outperforms all other methods on all images, see Table 5.5. It
was suggested by Levin and Nadler [68] that image priors are not useful at extremely high
noise levels. However, our results suggest otherwise: Our method is the best-performing
method on this noise level. The second best performing method, EPLL, is also a prior-
based method. The improvement of our method over BM3D (which is not prior-based) is
often very high (almost 3dB on image “Lena”).

Comparison on 2500 test images: Figure 5.8 (top) compares the results achieved with an
MLP on σ = 10 to BM3D. We outperform BM3D on 1876 (75.04%) of the 2500 images. The
average improvement over all images is 0.1dB. The largest average improvement is on the
McGill dataset (0.27dB), whereas the smallest average improvement is on the VOC training
set (0.02dB). The improvement in PSNR is very small on the VOC training set, but we
observe an improvement on 301 (60.2%) of the 500 images.

Figure 5.8 (middle) compares the results achieved with an MLP on σ = 50 to BM3D. We
outperform BM3D on 2394 (95.76%) of the 2500 images. The average improvement over all
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MLP vs. BM3D: -2.09dB MLP vs. BM3D: -1.03dB MLP vs. BM3D: -0.75dB

MLP vs. BM3D: -1.09dB MLP vs. BM3D: -0.66dB MLP vs. BM3D: -0.54dB

Figure 5.7: Images where BM3D outperforms the MLP, for σ = 25. All images contain
regular structures. The chair (bottom right) contains a regular dotted pattern.

datasets is 0.32dB. The largest average improvement is on the Berkeley dataset (0.36dB),
whereas the smallest average improvement is on the McGill dataset (0.27dB). This is an
even greater improvement over BM3D than on σ = 25, see Figure 5.5.

Figure 5.8 (bottom) compares the results achieved with an MLP on σ = 75 to BM3D.
We outperform BM3D on 2440 (97.60%) of the 2500 images. The average improvement over
all datasets is 0.36dB. The average improvement is almost the same for all datasets, ranging
from 0.34 to 0.37dB.

Adaptation to other noise levels: How do the MLPs perform on noise levels they have not
been trained on? Figure 5.9 summarizes the results achieved by MLPs on noise levels they
have not been trained on and compares these results to BM3D. The results are averaged
over the 500 images in the Berkeley dataset. We varied σ between 5 and 100 in steps of 5.
We see that the MLPs achieve better results than BM3D on the noise levels they have been
trained on. However, the performance degrades quickly for noise levels they have not been
trained on. Exceptions are the MLPs trained on σ = 50 and σ = 75, which also outperform
BM3D on σ = 45 and σ = 55 (for the MLP trained on σ = 50) and σ = 70 and σ = 80 (for
the MLP trained on σ = 75).

We conclude than our method is particularly well suited for medium to high noise levels.
We outperform the previous state-of-the-art on all noise levels, but for σ = 10, the improve-
ment is rather small (0.1dB). However, our method has to be trained on each noise level in
order to achieve good results.
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Figure 5.8: Results compared to BM3D on five datasets of 500 images and different noise
levels. Top: σ = 10, middle: σ = 50, bottom: σ = 75.
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Figure 5.9: Results achieved on different noise levels. Results are averaged over the 500
images in the Berkeley dataset.
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5.6 Results: Comparison with theoretical bounds

It has been observed that recent denoising algorithms tend to perform approximately equally
well [22], which naturally raises the question of whether recent state-of-the-art algorithms
are close to an inherent limit on denoising quality. Two approaches to estimating bounds
on denoising performance have been followed [22, 68]. We will relate the results obtained
by our algorithm to these bounds.

Figure 5.10: Images “Mandrill” and “Parrot”. For σ = 25, the theoretical bounds estimated
by Chatterjee and Milanfar [22] are very close to the result achieved by BM3D: 25.61dB and
28.94dB, respectively. Our results outperform these bounds and are 26.01dB and 29.25dB
respectively.

5.6.1 Clustering-based bounds

Chatterjee and Milanfar [22] derive bounds on image denoising capability. The authors make
a “cluster” assumption about images: Each patch in a noisy image is assigned to one of a
finite number of clusters. Clusters with more patches are denoised better than clusters with
fewer patches. According to their bounds, improvements over existing denoising algorithms
are mainly to be achieved on images with simple geometric structure (the authors use a
synthetic “box” image as an example), whereas current denoising algorithms (and BM3D in
particular) are already very close to the theoretical bounds for images with richer geometric
structure.

Figure 5.10 shows two images with richer structure and on which BM3D is very close to
the estimated theoretical bounds for σ = 25 [22]. Very little, if any, improvement is expected
on these images. Yet, we outperform BM3D by 0.4dB and 0.31dB on these images, which
is a significant improvement.

The MLP does not operate according to the cluster assumption (it operates on a single
patch at a time) and it performs particularly well on images with rich geometric structure.
We therefore speculate that the cluster assumption might not be a reasonable assumption
to derive ultimate bounds on image denoising quality.

5.6.2 Bayesian bounds

Levin and Nadler [68] derive bounds on how well any denoising algorithm can perform. The
bounds are dependent on the patch size, where larger patches lead to better results. For

98



worst best mean
BLSGSM [94] 22.65dB 23.57dB 23.15dB
KSVD [1] 21.69dB 22.59dB 22.16dB
NLSC [74] 21.39dB 22.49dB 21.95dB
BM3D [25] 22.94 dB 23.96dB 23.51dB
BM3D, step1 [25] 21.85dB 22.79dB 22.35dB
EPLL [132] 22.94dB 24.07 dB 23.56 dB
MLP 23.32dB 24.34dB 23.85dB

Table 5.6: Comparison of results achieved by different methods on the down-sampled and
cropped “Peppers” image for σ = 75 and 100 different noisy instances.

(a) Original image (b) Noisy input, 10.57dB

(c) BM3D, 23.92dB (d) MLP, 24.27dB

Figure 5.11: For image (a) and σ = 75, the best achievable result estimated by Levin and
Nadler [68] is only 0.07dB better than the result achieved by BM3D (exact dB values are
dependent on the noisy instance). On average, our results are 0.34dB better than BM3D.
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large patches and low noise, tight bounds cannot be estimated. On the image depicted in
Figure 5.11a (a down-sampled and cropped version of the image “Peppers”) and for noise
level σ = 75, the theoretically best achievable result using patches of size 12×12 is estimated
to be 0.07dB better than BM3D (23.86dB for BM3D and 23.93 for the estimated bound).

We tested an MLP trained on σ = 75 as well as other methods (including BM3D) on the
same image and summarize the results in Table 5.6. We used 100 different noisy versions of
the same clean image and report the worst, best and average results obtained. For BM3D,
we obtain results that are in agreement with those obtained by Levin and Nadler [68], though
we note that the difference between the worst and best result is quite large: Approximately
1dB. The high variance in the results is due to the fact that the test image is relatively
small and the noise variance quite high. The results obtained with BLSGSM and KSVD are
also in agreement with those reported by Levin and Nadler [68]. NLSC achieves results that
are much worse than those obtained by BM3D on this image and this noise level. EPLL
achieves results that are on par with those achieved by BM3D.

BM3D achieves a mean PSNR of 23.51dB and our MLP achieves a mean PSNR of
23.85dB, an improvement of 0.34dB. Visually, the difference is noticeable, see Figure 5.11.
This is a much greater improvement than was estimated to be possible by Levin and
Nadler [68], using patches of size 12 × 12. This is possible because of the fact that we
used larger patches. Levin and Nadler [68] were unable to estimate tight bounds for larger
patch sizes because of their reduced density in the dataset of clean patches.

Levin and Nadler [68] describe BM3D as a method that uses patches of size 12 × 12.
However, BM3D is a two-step procedure. It is true that BM3D uses patches of size 12× 12
(for noise levels above σ = 40) in its first step. However, the second step of the procedure
effectively increases the support size: In the second step, the patches “see beyond” what
they would have seen in the first step, but it is difficult to say by how much the support
size is increased by the second step. Therefore, a fairer comparison would have been to
compare the estimated bounds against only the first step of BM3D. If only the first step of
BM3D is used, the mean result is 22.35dB. Therefore, if the constraint on the patch sizes is
strictly enforced for BM3D, the difference between the theoretically best achievable result
and BM3D is larger than suggested by Levin and Nadler [68].

5.6.3 Bayesian bounds with unlimited patch size

More recently, bounds on denoising quality achievable using any patch size have been sug-
gested by Levin et al . [69]. This was done by extrapolating bounds similar to those suggested
by Levin and Nadler [68] to larger patch sizes (including patches of infinite size). For σ = 50
and σ = 75, the bounds lie 0.7dB and 1dB above the results achieved by BM3D, respec-
tively. The improvements of our approach over BM3D on these noise levels (estimated on
2500 images) are 0.32dB and 0.36dB, respectively. Our approach therefore reaches respec-
tively 46% and 36% of the remaining possible improvement over BM3D. Furthermore, Levin
et al . [69] suggest that increasing the patch size suffers from a law of diminishing returns.
This is particularly true for textured image content: The larger the patch size, the harder it
becomes to find enough training data. Levin et al . [69] therefore suggest that increasing the
patch size should be the most useful for smooth image content. The observation that our
method performs much better than BM3D on images with smooth areas (see middle row
in Figure 5.3) is in agreement with this statement. The fact that image denoising is cursed
with a law of diminishing returns also suggests that the remaining available improvement
will be increasingly difficult to achieve. However, Levin et al . [69] suggest that patch-based
denoising can be improved mostly in flat areas and less in textures ones. Our observation
that the MLP performs particularly well in areas with complicated structure (such as on the
bottom image in Figure 5.3 or both images in Figure 5.10) shows that large improvements
over BM3D on images with complicated textures are possible.
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5.6.4 Bayesian bounds correlate with the results achieved with MLPs

We have previously seen (Figures 5.3, 5.6, and 5.7) that we outperform BM3D on smooth
regions and regions with irregular structure, whereas BM3D outperforms our method on
images with repeating structure. An explanation for this phenomenon is that BM3D is based
on a block-matching procedure and cannot find matching blocks in images with irregular
textures and therefore does not perform very well. In this section, we provide an explanation
for this phenomenon that is related to the Bayesian denoising bounds with finite patch sizes.

The Bayesian denoising estimate given by Levin and Nadler [68] is given by:

µ̂(yc) =
1
N

∑
i p(y|xi)xi,c

1
N

∑
i p(y|xi)

, (5.3)

where xi is a clean image patch and xi,c is the center pixel of that patch. The pixel yc to be
denoised lies in the center of a larger patch y. The conditional probability p(y|xi) is given
by:

p(y|xi) =
1

(2πσ2)
d
2

e−
||xi−y||

2

2σ2 (5.4)

for AWG noise. It is shown by Levin and Nadler [68] that the Bayesian denoising estimate
µ̂(yc) indeed converges to the true Bayesian minimum mean squared error (MMSE) estimator
if N tends to infinity. Hence, a noisy pixel yc can be denoised by comparing how well
clean patches xi can explain the noisy patch y and performing a weighted average for large
N . Achieving good results with this approach is extremely time-consuming, but can be
parallelized. In addition to the single-pixel Bayesian denoising estimate proposed by Levin
and Nadler [68], we propose the full-patch Bayesian denoising estimate

µ̂(y) =
1
N

∑
i p(y|xi)xi

1
N

∑
i p(y|xi)

, (5.5)

where µ̂(y) is a whole patch.

Experiments: We use two images of size 100× 100 pixels and corrupted with AWG noise,
σ = 75, see Figure 5.12. We observe the evolution of both the single pixel and the full
patch Bayesian estimate for growing N , see Figure 5.13. Following [68], we use the LabelMe
dataset [103] as a source of clean image patches for the Bayesian denoising estimates and use
patches of size 12 × 12. As a comparison, we provide the results achieved with BM3D [25]
and with two MLPs trained on σ = 75. For BM3D, we provide (i) the results achieved with
only the first step of the algorithm, and (ii) the results achieved with both steps. The first
MLP we use in the comparison has an input patch size of 39 × 39 and an output patch
size of 17× 17, whereas the second MLP uses input and output patches of the size 12× 12
and is therefore more comparable to the denoising approach using the Bayesian full-patch
estimate.

Results: BM3D outperforms the MLP on the pants image, whereas the MLP outperforms
BM3D on the peppers image. The MLPs are barely able to recover the regular stripes on the
pants, whereas BM3D recovers the stripes quite well, see Figure 5.14. The fact that BM3D
outperforms the MLP on that image was expected: The image is very regular and contains
many patches that look similar. The MLP outperforms BM3D on the peppers image. We
see that the Bayesian full patch estimate µ̂(y) always outperforms the Bayesian single-pixel
estimate µ̂(yc). This can be explained by the averaging in areas of overlapping patches:
Estimation errors are averaged out to some extent.

For the Bayesian estimates, we observe that the PSNR tends to increase with growing
N , though this is not always the case. We note that there is no guarantee that the PSNR
always increases: The PSNR is merely guaranteed to approach the true MMSE as N tends
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(a) (b)

(c) (d)

Figure 5.12: Image (a) is a down-sampled and cropped version of the “peppers” image and
has already been used by Levin and Nadler [68]. Image (b) shows a part of the pants in
image “Barbara”. Images (c) and (d) show the noisy versions of these images, using σ = 75.

to infinity, but it is possible for the PSNR to decrease with growing N . This can happen
when the “best” clean image patches are presented first: In an extreme scenario, the clean
version of the image to be denoised is contained in the dataset of clean image patches. If
the clean version of the noisy image is visited first, the denoising result will be very good.
The remaining patches in the dataset will tend to decrease the PSNR value.

For the peppers image, the Bayesian bound estimates slightly outperform BM3D. This is
in agreement with the findings of Levin and Nadler [68], though we were able to observe this
effect after only N = 108 clean image patches instead of N = 1010 used in [68]. The MLP
using the larger input patches (39 × 39) performs slightly better than the MLP using the
smaller (12 × 12) patches. Both MLPs perform slightly better than the Bayesian bounds.
For the MLP using 39× 39 patches, this can be explained by the fact that it is not bounded
by the bounds estimated for 12× 12 patches. For the MLP using 12× 12 patches, this can
presumably be explained by the fact that an insufficient number of clean patches were used
to accurately estimate the MMSE. We also note that using only the first step of BM3D
yields results that are significantly worse than those obtained using both steps of BM3D.
The results obtained using only the first step of BM3D are quickly outperformed using the
Bayesian estimates.

For the pants image, the Bayesian estimates are poor and barely progress with growing
N . The MLPs give somewhat better results than the Bayesian estimates, but BM3D out-
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Figure 5.13: Estimated MMSE with growing number of clean patches. For the pants image,
there is barely any progress. The full-patch estimate always provides better results than the
single pixel estimate.

performs the MLPs by approximately 3dB, which is a significant improvement. Even when
only the first step of BM3D is used, the results are still much better than those obtained
with the MLPs. It is interesting that for this image, the MLP using smaller patches slightly
outperforms the MLP using larger patches.

Conclusion: The pants image is difficult to denoise using the Bayesian approach because
it is not well represented by the distribution of natural image patches. The same argument
holds true for the MLPs: The MLPs are trained on a large dataset of natural image patches.
They do not perform well on image patches that do not resemble those in the training
dataset. The MLPs are therefore a method that is similar to the Bayesian approach. We
expect the results achieved by both approaches to correlate (and indeed observe such a
correlation on the peppers and pants images).

BM3D performs particularly well on the pants image compared to both the MLP and
the Bayesian approach because of a combination of two reasons: i) The patches in the pants
image are uncommon in the set of natural image patches, and ii) many patches in the pants
image are similar to other patches in the same image. BM3D is therefore ideally suited for
images such as the pants image.

The fact that the MLP using smaller patches achieves better results than the MLP using
larger patches on the pants image is counterintuitive, but is in agreement with the findings of
Levin et al . [69] suggesting denoising algorithms with variable patch sizes: Large patches for
smooth areas and smaller patches for textured areas. Large patches for textures areas can
be a disadvantage because one cannot find enough clean patches resembling such patches.
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BM3D: 23.18dB MLP: 20.12dB

Bayesian single pixel estimate Bayesian full patch estimate
µ̂(yc): 19.56dB µ̂(y): 19.90dB

Figure 5.14: Results obtained with various methods on image “pants”, corrupted with AWG
noise, σ = 75. The Bayesian bound estimates and the MLP are barely able to recover the
stripes, whereas BM3D recovers the stripes well.
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5.7 Results: comparison on non-AWG noise

Virtually all denoising algorithms assume the noise to be AWG. However, images are not
always corrupted by AWG noise. Noise is not necessarily additive, white, Gaussian and
signal independent. For instance in some situations, the imaging process is corrupted by
Poisson noise (such as photon shot noise). Denoising algorithms which assume AWG noise
might be applied to such images using some image transform [78]. Rice-distributed noise,
which occurs in magnetic resonance imaging, can be handled similarly [36].

In most cases however, it is more difficult or even impossible to find Gaussianizing trans-
forms. In such cases, a possible solution is to create a denoising algorithm specifically
designed for that noise type. MLPs allow us to effectively learn a denoising algorithm for a
given noise type, provided that noise can be simulated. In the following, we present results
on three noise types that are different from AWG noise. We make no effort to adapt our
architecture or procedure in general to the specific noise type but rather use an architecture
that yielded good results for AWG noise (four hidden layers of size 2047 and input and
output patches of size 17× 17).

5.7.1 Stripe noise

It is often assumed that image data contains structure, whereas the noise is uncorrelated
and therefore unstructured. In cases where the noise also exhibits structure, this assumption
is violated and denoising results become poor. We here show an example where the noise is
additive and Gaussian (with σ = 50), but where 8 horizontally adjacent noise values have
the same value.

Since there is no canonical denoising algorithm for this noise, we choose BM3D as the
competitor. An MLP trained on 82 million training examples outperforms BM3D for this
type of noise, see left column of Figure 5.15.

5.7.2 Salt and pepper noise

When the noise is additive Gaussian, the noisy image value is still correlated to the original
image value. With salt and pepper noise, noisy values are not correlated with the original
image data. Each pixel has a probability p of being corrupted. A corrupted pixel has
probability 0.5 of being set to 0; otherwise, it is set to highest possible value (255 for 8-bit
images). We show results with p = 0.2.

A common algorithm for removing salt and pepper noise is median filtering. We achieved
the best results with a filter size of 5×5 and symmetrically extended image boundaries. We
also experimented with BM3D (by varying the value of σ) and achieved a PSNR of 25.55dB.
An MLP trained on 88 million training examples outperforms both methods, see middle
column of Figure 5.15.

The problem of removing salt and pepper noise is reminiscent of the in-painting problem,
except that it is not known which pixels are to be in-painted. If one assumes that the
positions of the corrupted pixels are known, the pixel values of the non-corruped pixels can
be copied from the noisy image, since these are identical to the ground truth values. Using
this assumption, we achieve 36.53dB with median filtering and 38.64dB with the MLP.

5.7.3 JPEG quantization artifacts

Such artifacts occur due to the JPEG image compression algorithm. The quantization
process removes information, therefore introducing noise. Characteristics of JPEG noise
are blocky images and loss of edge clarity. This kind of noise is not random, but rather
completely determined by the input image. In our experiments we use JPEG’s quality
setting Q = 5, creating visible artifacts.
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“stripe” noise: 14.68dB s & p noise: 12.41dB JPEG quantization: 27.33dB

BM3D [25]: 24.38dB median filtering: 30.33dB SA-DCT [37]: 28.96dB

MLP: 30.11dB MLP: 35.08dB MLP:29.42dB

Figure 5.15: Comparison of our method to other on stripe noise (left), salt-and-pepper noise
(middel) and JPEG quantization artifacts (right). BM3D is not designed for stripe noise.
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image peak GAT+BM3D UWT/BDCT [80] UWT/BDCT [71] MLP

Barbara 1 20.83dB - 20.79dB 21.44dB
Barbara 20 27.52dB - 27.33dB 26.08dB
Cameraman 1 20.34dB 20.35dB 20.48dB 21.66dB
Cameraman 20 26.83dB 25.92dB 26.93dB 26.93dB
Lena 1 22.96dB 22.83dB - 24.26dB
Lena 20 29.39dB 28.46dB - 29.89dB
Fluo.cells 1 24.54dB 25.13dB 25.25dB 25.56dB
Fluo.cells 20 29.66dB 29.47dB 31.00dB 29.98dB
Moon 1 22.84dB - 23.49dB 23.48dB
Moon 20 25.28dB - 26.33dB 25.71dB

Table 5.7: Comparison of MLPs against two competing methods on mixed Poisson-Gaussian
noise. The MLPs perform particularly well when the noise is strong (peak = 1), but are
also competitive on lower noise.

A common method to enhance JPEG-compressed images is to shift the images, re-apply
JPEG compression, shift back and average (see Nosratinia [87]). This method achieves a
PSNR of 28.42dB on our image. We also compare against the state-of-the-art in JPEG
de-blocking [37].

An MLP trained on 58 million training examples with that noise outperforms both
methods, see right column of Figure 5.15. In fact, the method described by Nosratinia [87]
achieves an improvement of only 1.09dB over the noisy image, whereas our method achieves
an improvement of 2.09dB. SA-DCT [37] achieves an improvement of 1.63dB.

5.7.4 Mixed Poisson-Gaussian noise

In photon-limited imaging, observations are usually corrupted by mixed Poisson-Gaussian
noise [80, 71]. Observations are assumed to come from the following model:

z = αp+ n, (5.6)

where p is Poisson-distributed with mean x and n is Gaussian-distributed with mean 0 and
variance σ2. One can regard x to be the underlying “true” image of which one wishes to
make a noise-free observation. To generate a noisy image from a clean one, we follow the
setup used by Mäkitalo and Foi [80] and Luisier et al . [71]: We take the clean image and
scale it to a given peak value, giving us x. Applying (5.6) gives us a noisy image z.

Two canonical approaches exist for denoising in the photon-limited setting: (i) Applying
a variance stabilizing transform on the noisy image, running a denoising algorithm designed
for AWG noise (such as BM3D) on the result and finally applying the inverse of the variance
stabilizing transform, and (ii) designing a denoising algorithm specifically for mixed Poisson-
Gaussian noise. GAT+BM3D [80] is an example of the first approach, whereas UWT/BDCT
PURE-LET [71] is an example of the second approach. In the case where a variance-
stabilizing transform such as the Anscombe transformation or the generalized Anscombe
transformation (GAT) [114] is applied, the difficulty lies in the design of the inverse transform
[76, 77, 78, 79]. Designing a denoising algorithm specifically for Poisson-Gaussian noise is
also a difficult task, but can potentially lead to better results.

Our approach to denoising photon-limited data is to train an MLP on data corrupted
with mixed Poisson-Gaussian noise. We trained an MLP on noisy images using a peak value
of 1 and another MLP for peak value 20, both on 60 million examples. For the Gaussian
noise, we set σ to the peak value divided by 10, again following the setup used by Mäkitalo
and Foi [80] and Luisier et al . [71]. We compare our results against GAT+BM3D [80],
which is considered state-of-the-art. We compare on further images in Table 5.7. For
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noisy, peak=1, PSNR: 2.87dB noisy, peak=20, PSNR: 14.53dB

GAT+BM3D [80] GAT+BM3D [80]

PSNR: 22.90dB PSNR: 29.36dB

MLP: 24.26dB MLP: 29.89dB

Figure 5.16: Comparison of our method to GAT+BM3D [80] on images corrupted with
mixed Poisson-Gaussian noise, which occurs in photon-limited imaging.
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UWT/BDCT PURE-LET [71], we noticed a discrepancy between the results reported by
Mäkitalo and Foi [80] and by Luisier et al . [71] and therefore report both. We see that the
MLPs outperform the state-of-the art on image “Lena” in both settings.

(a) (b)

Figure 5.17: Block matching: The goal of the procedure is to find the patches most similar
to the reddish (“reference”) patch. The neighbors (blueish patches) have to be found within
a search region (represented by the larger black bounding box). Patches can overlap. Here,
the procedure was applied on (a) the “Barbara” image and (b) the “House” image, both
corrupted with AWG noise with σ = 10. This figure is inspired by Figure 1 in [25].

5.8 Combining BM3D and MLPs: Block-matching MLPs

Many recent denoising algorithms rely on a block-matching procedure. This most notably
includes BM3D [25], but also NLSC [74]. The idea is to find patches similar to a reference
patch and to exploit these “neighbor” patches for better denoising. More precisely, the
procedure exploits the fact that the noise in the different patches is independent, whereas
the (clean) image content is correlated. Figure 5.17 shows the effect of the procedure on two
images.

Since this technique has been used with so much success, we ask the question: Can MLPs
be combined with a block matching procedure to achieve better results? In particular, can
we achieve better results on images where we perform rather poorly compared to BM3D and
NLSC, namely images with repeating structure? To answer this question, we train MLPs
that take as input not only the reference patch, but also its k nearest neighbors in terms
of `2 distance. We will see that such block-matching MLPs can indeed achieve better on
images with repeating structure. However, they also sometimes achieve worse results than
plain MLPs and do not achieve better results on average.

5.8.1 Differences to previous MLPs

Previously, we trained MLPs to take as input one noisy image patch and to output one
denoised image patch. The best results were achieved when the input patch size was 39×39
and the output patch was of size 17 × 17. Now, we train MLPs to take as input k noisy
patches of size 13× 13 or 17× 17 and to output one noisy patch of the same size. The block
matching procedure has to be performed for each training pair, slowing down the training
procedure by approximately a factor of 2. One could also imagine MLPs taking as input
k patches and providing k patches as output, but we have been less successful with that
approach. In all our experiments, we used k = 14. The architecture of the MLP we used
had four hidden layers; the first hidden layer was of size 4095 and the remaining three were
of size 2047. We discuss the training procedure in Chapter 6.
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image BM3D [25] NLSC [74] MLP BM-MLP

Barbara 30.67dB 30.50 dB 29.52dB 29.75dB
Boat 29.86dB 29.86dB 29.95dB 29.92 dB
C.man 29.40dB 29.46dB 29.60 dB 29.67dB
Couple 29.68dB 29.63dB 29.75dB 29.73 dB
F.print 27.72dB 27.63dB 27.67 dB 27.63dB
Hill 29.81dB 29.80dB 29.84 dB 29.87dB
House 32.92 dB 33.08dB 32.52dB 32.75dB
Lena 32.04dB 31.87dB 32.28dB 32.17 dB
Man 29.58dB 29.62dB 29.85 dB 29.86dB
Montage 32.24dB 32.15 dB 31.97dB 32.11dB
Peppers 30.18dB 30.27 dB 30.27dB 30.53dB

Table 5.8: Block-matching MLP compared to plain MLPs and other algorithms for σ = 25

We note that our block-matching procedure is different from the one employed by BM3D
in a number of ways: (i) We always use the same number of neighbors, whereas BM3D
chooses all patches whose distance to the reference patch is smaller than a given threshold,
up to a maximum of 32 neighbors, (ii) BM3D is a two-step approach, where the denoising
result of the first step is merely used to find better neighbors in the second step. We find
neighbors directly in the noisy image. (iii) When the noise level is higher than σ = 40,
BM3D employs “coarse pre-filtering” in the first step: patches are first transformed (using
a 2D wavelet or DCT transform) and then hard-thresholded. This is already a form of
denoising and helps to find better neighbors. We employ no such strategy. (iv) BM3D has a
number of hyper-parameters (patch and stride sizes, type of 2D transform, thresholding and
matching coefficients). The value of the hyper-parameters are different for the two steps of
the procedure. We have fewer hyper-parameters, in part due to the fact that our procedure
consists of a single step. We also choose to set the search stride size to the canonical choice
of 1.

5.8.2 Block-matching MLPs vs. plain MLPs

Results on 11 standard test images: Table 5.8 summarizes the results achieved by an
MLP using block matching with k = 14, patches of size 13 × 13 and σ = 25. We omit
KSVD and EPLL from the comparison because the block-matching MLP and the plain
MLP both outperform the two algorithms on every image. The mean result achieved on
the 11 images is 0.07dB higher for the block-matching MLP than for the plain MLP. The
block-matching MLP outperforms NLSC on 8 images, whereas the plain MLP outperforms
NLSC on 7 images. The block-matching MLP outperforms the plain MLP on 7 images.
The improvement on the plain MLP is the largest on images Barbara, House and Peppers
(approximately 0.25dB on each). The largest decrease in performance compared to the plain
MLP is observed on image Lena (a decrease of 0.11dB). We see that the block-matching
procedure is most useful on images with repeating structure, as found in the images “Bar-
bara” and “House”. However, both BM3D and NLSC achieve results that are far superior
to the block-matching MLP on image “Barbara”.

Results on larger test sets: The block-matching MLP outperforms the plain MLP on 1480
(59.2%) of the 2500 images, see Figure 5.18. The average improvement over all datasets is
0.01dB. The largest improvement was on the VOC training set (0.03dB). On the McGill
dataset, the block-matching MLP was worse by 0.01dB. The block-matching MLP and the
plain MLP therefore achieve approximately equal results on average.

On image 198023 in the Berkeley dataset, the MLP with block-matching outperforms the
plain MLP by 0.42dB. This is an image similar to the “Barbara” images in that it contains
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Figure 5.18: Results of the block-matching MLP compared to the plain MLP on five datasets
of 500 images

(a) (b)

Figure 5.19: The MLP with block-matching outperforms the plain MLP on this image. (a)
Clean image (b) regions where the block-matching MLP is better are highlighted.
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a lot of regular structure, see Figure 5.19.
On image 004513 in the VOC test set, see Figure 5.3, the MLP with block-matching

performs 1.09dB worse than the plain MLP. This can be explained by the fact that the
block-matching MLP uses smaller patches, making it blind to low frequency noise, resulting
in a decrease in performance on images with smooth surfaces.

Conclusion: On average, the results achieved with a block-matching MLP are almost equal
to those achieved by a plain MLP. Plain MLPs perform better on images with smooth
surfaces whereas the block-matching MLPs provide better results on images with repeating
structure. However, combining MLPs with the block-matching procedure did not allow us to
outperform BM3D and NLSC on image “Barbara”. We emphasize that the block-matching
MLPs use less information as input than the plain MLPs, yet still achieve results that
are comparable on average. Block-matching is a search procedure and therefore cannot be
learned by a feed-forward architecture with few layers.

5.9 Combining BM3D and MLPs: Ensembling MLPs

In Section 5.8 we described block-matching MLPs, which are an attempt to enhance the
results achieved with MLPs using BM3D’s block-matching procedure. In this section, we
show that it is possible to combine MLPs with BM3D more directly, using ensembling
MLPs. It has already been shown [58] that image denoising methods have complementary
strengths and weaknesses. In the same paper, the outputs of several denoising algorithms
are combined using a method based on regression tree fields (RTFs). We attempt a similar
approach, using an MLP and ask the question: Is it possible to achieve results that are
better than the best of the inputs? We will see that ensembling MLPs are indeed able to
achieve results that are often superior to the best of the inputs.

5.9.1 Ensembling with MLPs

Plain MLPs take as input one noisy patch and provide one denoised patch as output. En-
sembling MLPs (E-MLPs) take as input several patches and provide as output one denoised
patch. The input patches we use are the following: (i) one patch from the original noisy
image (ii) one patch from the BM3D-denoised image, and (iii) one patch from the MLP-
denoised image. All patches are taken from corresponding image locations. The idea is
that the ensembling MLP should be able to adaptively decide which of the inputs is better.
The noisy patch is also provided as input in order to avoid loss of information: Applying
a denoising algorithm almost inevitably destroys information contained in the noisy image.
Figure 5.20 graphically illustrates the method.

noisy image

image denoised 
with method 1

image denoised
 with method 2

denoised image

w
h
i
t
e
n

combine using an MLP
f(x, W) = y

x
y

The parameters W are
learned on a training set

Figure 5.20: Illustration of how we combine denoising results of different algorithms using
MLPs. We call this method ensembling MLPs (E-MLPs).
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noisy, σ = 50 BM3D MLP

whitened image 1 whitened image 2 whitened image 3

Figure 5.21: Effect of the whitening transform for ensembling MLPs. Top row: The noisy
input image, BM3D and MLP. Bottom row: The three images obtained after applying the
whitening transform. The third image mostly contains the difference between the BM3D
and MLP images.

Training: We train an E-MLP with architecture (3×25×25, 4×2047, 17×17), (three input
patches of size 25× 25) on a training set of approximately 8× 104 images. For each image,
we have (i) the noisy image, corrupted with AWG noise, σ = 50, (ii) the result of BM3D
and (iii) the result of an MLP trained on σ = 50. We chose BM3D and MLP as denoising
algorithms because of their good performance and relatively short running times (on GPU,
for the MLP) and because of their complementary strengths and weaknesses: BM3D is
good on regular structures, the MLP on more complex structures. However, one could also
imagine using a different set of denoising algorithms. The three patches extracted from the
three images are then whitened, using an empirically found 3×3 whitening matrix. This way,
the three input patches are approximately uncorrelated. We were unable to achieve good
results without this whitening transform, presumably because the patches from the BM3D
and the MLP images are too similar, which might make optimization difficult [64]. The
effect of the whitening transform is illustrated in Figure 5.21. Training otherwise proceeds
exactly like for the plain MLPs and the BM-MLPs.

5.9.2 Results with ensembling MLPs

Results on 11 standard test images: Table 5.9 lists the results obtained on 11 standard
test images with an E-MLP and with other algorithms. The E-MLP outperforms all other
methods on all images except image “Barbara”. We see that the output of the E-MLP is
better than the best input on all images except image “Barbara”. We can already answer
our question in the positive: E-MLPs are able to achieve results than are better than the
best of its inputs. While BM3D is still the best method on image “Barbara”, the E-MLP
achieves an improvement of approximately 1.6dB over the plain MLP. The improvements
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E-MLP:
image KSVD [1] EPLL [132] BM3D [25] NLSC [74] MLP MLP and BM3D

Barbara 25.22dB 24.83dB 27.21dB 27.13 dB 25.37dB 26.95dB
Boat 25.90dB 26.59dB 26.72dB 26.73dB 27.02 dB 27.11dB
C.man 25.42dB 26.05dB 26.11dB 26.36dB 26.42 dB 26.75dB
Couple 25.40dB 26.24dB 26.43dB 26.33dB 26.71 dB 26.78dB
F.print 23.24dB 23.59dB 24.53 dB 24.25dB 24.23dB 24.57dB
Hill 26.14dB 26.90dB 27.14dB 27.05dB 27.32 dB 27.40dB
House 27.44dB 28.77dB 29.71dB 29.88 dB 29.52dB 30.00dB
Lena 27.43dB 28.39dB 28.99dB 28.88dB 29.34 dB 29.46dB
Man 25.83dB 26.68dB 26.76dB 26.71dB 27.08 dB 27.13dB
Montage 26.42dB 27.13dB 27.69dB 28.02dB 28.07 dB 28.34dB
Peppers 25.91dB 26.64dB 26.69dB 26.73dB 26.74 dB 27.18dB

Table 5.9: Ensembling BM3D and MLP with an MLP, σ = 50. The results are usually
better than the best of the two inputs.

MLP, PSNR: 25.37dB BM3D: 27.21dB E-MLP: 26.95dB

MLP, PSNR: 29.34dB BM3D: 28.99dB E-MLP: 29.46dB

Figure 5.22: Results obtained with an ensembling MLP (E-MLP) on images Barbara and
Lena, corrupted with AWG noise, σ = 50. On image Barbara, BM3D produces better results
on regular textures, e.g . the pants and the scarf, whereas the MLP produces better results
in smooth areas, e.g . the floor. The E-MLP combines the strengths of both methods: The
regular textures look better than when using the MLP and the floor looks better than when
using BM3D. On image Lena, the result obtained with the E-MLP is visually closer to the
result obtained with the MLP, but is superior in terms of PSNR. Hence, the result obtained
with BM3D presumably contains useful complementary information.
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Figure 5.23: E-MLP vs. BM3D (top) and E-MLP vs. plain MLP (bottom) on five datasets
of 500 images and σ = 50.
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method name: FoE [105] BM3D [25] EPLL [132] NLSC [74] RTFPlain [58] MLP
PSNR: 24.47dB 25.09dB 25.18dB 25.09dB 24.76dB 25.45dB

method name: RTFBM3D [58] RTFAll [58] E-MLP (combines MLP and BM3D)
PSNR: 25.38dB 25.51dB 25.58dB

Table 5.10: Results obtained with an ensembling MLP (E-MLP) and other methods on the
dataset of images used in [58], with σ = 50. Top: Stand-alone methods, bottom: methods
combining the results of other methods. The MLP is the best stand-alone method on this
dataset and this noise level. The E-MLP outperforms all RTF-based methods on this dataset
and this noise level.

obtained using the ensembling MLP can be visually appreciated in Figure 5.22.

Results on larger test sets: Figure 5.23 compares the results achieved with the E-MLP to
BM3D and the plain MLP on the 2500 images. The E-MLP achieves an average improvement
of 0.52dB over BM3D. The smallest average improvement is the McGill dataset, with 0.41dB,
while the largest improvement is on the VOC test set, with 0.57dB improvement. There are
only 6 images out of 2500 (0.24%) where the ensembling MLP is worse than BM3D.

The ensembling MLP achieves an average improvement of 0.2dB over the plain MLP.
The smallest improvement is on the McGill dataset, with 0.13dB improvement, the largest
improvement on the VOC training set, with 0.25dB improvement. Of the 2500 images, there
are 40 images (1.6%) where the results have become worse than the plain MLP (however by
only 0.12dB in the worst case).

Comparison against the RTF-based method [58]: Jancsary et al . [58] propose a denoising
method based on regression tree fields (RTFs). The RTFs produce a Gaussian conditional
random field (GCRF) on which it is possible to perform inference in order to obtain an image-
dependent prediction. The method can be used either by itself (RTFPlain) or in combination
with other denoising methods. The method combined with BM3D is denoted as RTFBM3D

and the method combined with BM3D, FoE [105], EPLL [132] and NLSC [74] is denoted
as RTFAll. Results for all three methods are reported on a subset of the Berkeley dataset,
with images down-scaled by a factor of 2 (i.e. the images are quite small: approximately
160 × 240 pixels). Table 5.10 compares our method to the RTF-based methods and others
on the same dataset, for σ = 50. We see that our E-MLP achieves the best results of all
methods on this dataset. We note that it might be possible to improve the results of the
E-MLP further by including the results of NLSC, FoE and EPLL.

Conclusion: We can conclude than ensembling MLPs are an effective way to combine the
strengths of complementary denoising algorithms. In our example using BM3D and a plain
MLP as input methods, the results of ensembling are almost always better than the best of
the input methods. We also see that this ensembling approach achieves better results than
the BM-MLP of Section 5.8. Ensembling MLPs also bring us still closer to the denoising
bounds estimated by Levin et al . [69]. Levin et al . [69] estimate the bounds to lie 0.7dB
above BM3D for σ = 50. With plain MLPs, we achieved an improvement of 0.32dB over
BM3D. The ensembling MLP achieves an improvement of 0.52dB over BM3D. This leaves
an estimated room for an improvement of only 0.18dB.

5.10 Code

We make available a Matlab toolbox allowing to denoise images with our trained MLPs
on CPU at http://people.tuebingen.mpg.de/burger/neural_denoising/. The script
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demo.m loads the image “Lena”, adds AWG noise with σ = 25 on the image and denoises
with an MLP trained on the same noise level. Running the script produces an output similar
to the following

>> demo

Starting to denoise...

Done! Loading the weights and denoising took 121.4 seconds

PSNRs: noisy: 20.16dB, denoised: 32.26dB

and display the clean, noisy and denoised images. Denoising an image is performed using
the function fdenoiseNeural:

>> im_denoised = fdenoiseNeural(im_noisy, noise_level, model);

The function takes as input a noisy image, the level of noise and a struct containing the step
size and the width of the Gaussian window applied on denoised patches.

>> model = {};

>> model.step = 3;

>> model.weightsSig = 2;

5.11 Discussion and Conclusion

In this chapter, we have described a learning-based approach to image denoising. We have
compared the results achieved by our approach against other algorithms and against denois-
ing bounds, allowing us to draw a number of conclusions.

Comparison against state-of-the-art algorithms:

• KSVD: We compared our method against KSVD [31] on 11 test images and for all
noise levels. KSVD outperforms our method only on image Barbara with σ = 10.

• EPLL: We outperform EPLL [132] on more than 99% of the 2500 test images on
σ = 25, and by 0.35dB on average. For all other noise levels and 11 test images, we
always outperform EPLL.

• NLSC: We outperform NLSC [74] more approximately 80% of the 2500 test images
on σ = 25, and by 0.16dB on average. The higher the noise level, the more favorably
we perform against NLSC. NLSC has an advantage over our method on images with
repeating structure, such as Barbara and House. However, at high noise levels, this
advantage disappears.

• BM3D: We outperform BM3D [25] on approximately 92% of the 2500 test images on
σ = 25, and by 0.29dB on average. Otherwise, the same conclusions as for NLSC hold:
The higher the noise level, the more favorably we perform against BM3D. BM3D has
an advantage over our method on images with repeating structure, such as Barbara
and House. However, at high noise levels, this advantage disappears.

Our method compares the least favorably compared to other methods on the lowest noise
level (σ = 10), but we still achieve an improvement of 0.1dB over BM3D on that noise level.

Comparison against denoising bounds:

• Clustering-based bounds Our results exceed the bounds estimated by Chatterjee
and Milanfar [22]. This is possible because we violate the “patch cluster” assump-
tion made by the authors. We conclude that the patch cluster assumption is not a
reasonable assumption to make in order to estimate denoising bounds. In addition,
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Chatterjee and Milanfar [22] suggest that there is almost no room for improvement
over BM3D on images with complex textures. We have seen that is not the case: Our
approach is often significantly better than BM3D on images with complex textures.

• Bayesian patch-based bounds Levin and Nadler [68] estimate denoising bounds in a
Bayesian setting, for a given patch size. Our results are superior to these bounds. This
is possible because we use larger patches than is assumed by Levin and Nadler [68]. The
same authors also suggest that image priors should be the most useful for denoising at
medium noise levels, but not so much at high noise levels. Yet, our method achieves
the greatest improvements over other methods at high noise levels.

Similar bounds estimated for patches of infinite size are estimated by Levin et al . [69].
We make important progress toward reaching these bounds: Our approach reaches
almost half the theoretically possible gain over BM3D. Levin et al . [69] agree with
Chatterjee and Milanfar [22] that there is little room for improvement on patches with
complex textures. We have seen that this is not the case.

We have seen that the reason why MLPs do not perform as well as BM3D on images
with regular textures is supported by estimated Bayesian bounds with finite patch
size. The amount of training data (i.e. the number of clean patches) resembling such
regularly textured patches is too small in order to denoise highly regular textures as
well as BM3D.

Comparison on other noise types: We have seen that our method can be adapted to
other types of noise by merely switching the training data. We have shown that we achieve
good results are on stripe noise, salt-and-pepper noise, JPEG quantization artifacts and
mixed Poisson-Gaussian noise. In the latter two cases we seem to be competitive with the
state-of-the-art.

Block-matching MLPs: We have also seen that results can sometimes be improved a
little further using a block-matching procedure. However, this comes at the cost of a more
complicated training procedure and longer training and test times. In addition, the block-
matching procedure is highly task-specific: It has been shown to work well on AWG noise,
but it is not clear that it is useful for all kinds of noise. In addition, plain MLPs could
potentially be used for other low-level vision tasks. It is not clear that the block-matching
procedure is useful for other tasks. We here face an often encountered conundrum: Is it
worth exploiting task-specific knowledge? This often leads to better results, at the cost of
more engineering.

Ensembling MLPs: On some images, our method outperforms BM3D by more than 1.5dB
and NLSC by more than 3dB, see Section 5.5. Our method therefore seems to have a clear
advantage over other methods on some images. However, we have seen that our approach
sometimes achieves results that are much worse than the previous state-of-the-art. This
happens especially on images with a lot of regular structure, such as the image “Barbara”.
Our attempt to ameliorate the situation using a block-matching procedure was only partially
successful. However, we showed that combining BM3D with MLPs via ensembling MLPs
achieves much better results. The results achieved with this method are significantly better
than those achieved with plain MLPs. In addition, there are almost no images where this
method performs worse than BM3D. The average results achieved using this method for
σ = 50 are close to the bounds estimated by Levin et al . [69]: A room for improvement
over BM3D of 0.7dB is estimated, and an improvement of 0.52dB is achieved using this
method. Training an ensembling MLP requires somewhat more engineering than training
a plain MLP, but less so than training a block-matching MLP. The ensembling MLP can
be regarded as a learning-based approach: Each denoising algorithm used as input can be
regarded as a feature extractor.
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Computation time: Denoising an image using an MLP takes approximately a minute on
CPU and less than 5 seconds on GPU. This is not as fast as BM3D, but much faster than
approaches that require learning a dictionary, such as KSVD or NLSC which can take almost
an hour per image (on CPU).

Training procedure: Chapter 6 describes our training procedure in detail and shows the
importance of various factors influencing the quality of the results, such as the size of the
training corpus, the architecture of the multi-layer perceptrons and the size of the input and
output patches. We show that some setups lead to surprisingly bad results and provide an
explanation for the phenomena.

Understanding denoising: Also not discussed in this chapter is the operating principle of
the multi-layer perceptrons: How do they achieve denoising? Trained neural networks are
often seen as “black boxes”, but we will see in Chapter 6 that in this case, the behavior can
be understood, at least to some extent.

Multi-scale extension: We showed in Chapter 3 that many denoising algorithms do not
handle low frequencies well and can be improved using a multi-scale procedure in which
the denoising algorithm is applied at various scales and the resulting images subsequently
recombined using a procedure resembling a Laplacian pyramid. This meta-procedure is
especially helpful at high noise levels. Can our method also be improved using this multi-
scale meta-procedure? We answer this question in the negative: We were not able to improve
the results using a multi-scale procedure, even at the highest noise level (σ = 170). This
result indicates that the input patches of our MLPs are large enough to adequately handle
low frequencies.
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6

Training and understanding multi-layer

perceptrons for image denoising

Chapter abstract In Chapter 5, we described image denoising as the problem of mapping
from a noisy image to a noise-free image and showed that multi-layer perceptrons can model
such a mapping effectively. Trained multi-layer perceptrons can achieve outstanding image
denoising performance for various types of noise (additive white Gaussian noise, mixed
Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes).
In this chapter, we discuss in detail which trade-offs have to be considered during the
training procedure. We will show how to achieve good results and which pitfalls to avoid.
By analysing the activation patterns of the hidden units we are able to make observations
regarding the functioning principle of multi-layer perceptrons trained for image denoising.

The material of this chapter is based on the following publications:

[13] H.C. Burger, C.J. Schuler, and S. Harmeling. Image denoising with multi-layer percep-
trons, part 2: training trade-offs and analysis of hidden activation patterns. Submitted to
a journal, available at http://arxiv.org/abs/1211.1552
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6.1 Introduction

In Chapter 5, we show that multi-layer perceptrons (MLPs) mapping a noisy image patch
to a denoised image patch are able to achieve outstanding image denoising results, even
surpassing the previous state-of-the-art [25]. In addition, the MLPs outperform one type of
theoretical bound in image denoising [22] and come a long way toward closing the gap to a
second type of theoretical bound [69]. Related work in image denoising is also discussed in
Chapter 5. This chapter explains the technical trade-offs to achieve those results.

Achieving good results with MLPs was possible through the use of larger patch sizes:
It is known that larger patch sizes help make the denoising problem less ambiguous [68].
However, large patches also make the denoising problem more difficult (the function is higher
dimensional). This required us to train high-capacity MLPs on a large number of training
samples. Training such MLPs is therefore time-consuming, though modern GPUs alleviate
the problem somewhat.

Training neural networks, especially large ones, is usually performed using stochastic
gradient descent and is sometimes considered more of an art than a science. While there
exist “tricks” to make training efficient [64, 7], it is still quite possible that some experimental
setups will lead to poor results. In these cases, it is often poorly understood why the results
are bad. One might sometimes attribute these bad results to “bad luck” such as an unlucky
weight initialization. This becomes a problem especially for time-consuming large-scale
experiments, where multiple restarts are simply not possible. It is therefore crucial to
understand which setups are likely to lead to good results and which to bad results before
launching an experiment.

A common criticism regarding neural networks is that they are “black boxes”: Given a
neural network, one can merely observe its output for a given input. The inner workings
or logic are usually not open for inspection. Under certain circumstances, this is not the
case: Convolutional neural networks [63] are usually easier to interpret for humans because
the hidden representations can be represented as images [65]. More recently, Erhan et
al . [33] have proposed an activation maximization procedure to find an input maximizing the
activation of a hidden unit, and have shown that this procedure allows for better qualitative
evaluation of a network.

Contributions: This chapter aims to address the above two issues for MLPs trained to
denoise image patches. In the first part of this chapter, we provide a detailed description
of a large and varied set of large-scale experiments. We will discuss various trade-offs
encountered during the training procedure. Certain settings of training parameters can lead
to initially good results, but later lead to a catastrophic degradation in performance. This
phenomenon is highly undesirable and we will provide guidelines on how to avoid it, as well
as an explanation of such phenomena.

In the second part of this chapter, we show that surprisingly, it is possible to gain insight
into the operating principle or inner workings of an MLP trained on image denoising. This
is the least difficult for MLPs with a single hidden layer, but we will show that MLPs with
more hidden layers are also interpretable through analysis of the activation patterns of the
hidden units. We also gain insight about denoising auto-encoders [120] due to their similarity
to our MLPs.

Notation and definitions: For an MLP with four hidden layers, each containing 2047
hidden units, input patches of size 39× 39 pixels and output patches of size 17× 17 pixels,
we use the following notation (39×39, 2047, 2047, 2047, 2047, 17×17) ≡ (39, 4×2047, 17). If
the input and output patches are of the same size, we use the following notation (17, 4×2047)
to denote an MLP with four hidden layers of size 2047 and input and output patches of size
17× 17 pixels.
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Figure 6.1: No overfitting even after many updates due to an abundance of training data.

We will periodically halt the training procedure of an MLP and report the test per-
formance, by which we mean the average PSNR achieved on the 11 standard test images
defined in Chapter 5. When we report the training performance, we mean the average
PSNR achieved on the last 2× 106 training samples. The test performance therefore refers
to image denoising performance, whereas the training performance refers to patch denoising
performance.

6.2 Training trade-offs to achieve good results with MLPs

In Chapter 5 we showed that it is possible to achieve state-of-the-art image denoising results
with MLPs. This section will show what steps are necessary to achieve these results. We
do so by tracking the evolution of the results for different experimental setups during the
training process. In particular, we will vary the size of the training dataset as well as the
architecture of the MLPs. We will mostly use AWG noise with σ = 25. Each experiment is
the result of many days and sometimes even weeks of computation time on a modern GPU
(we used nVidia’s C2050).

6.2.1 Long training times do not result in overfitting

In this section, we will use a much smaller training set as the one defined in Chapter 5.
We will use the 200 training images from the BSDS300 dataset, which is a subset of the
BSDS500 dataset.

We train an MLP with architecture (13, 2 × 511). We report both the training per-
formance and the test performance. The reason why the test performance is superior to
the training performance is that the test performance refers to the image denoising perfor-
mance (as opposed to the patch denoising performance). The image denoising performance
is better than the patch denoising performance because of the averageing procedure in areas
where patches overlap. We observe that the training and test performance improve steadily
during the first few million updates. Results still improve after 108 updates, albeit more
slowly. On the test set, results occasionally briefly become worse. We also see that there
is no overfitting even though we are using a rather small training set. This is due to the
abundance of training data (the probability that a noisy patch is seen twice is zero). These
results suggest that overfitting is not an issue.
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Figure 6.2: More hidden layers help. Three small hidden layers outperform one large hidden
layer.
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Figure 6.3: More hidden layers usually help. Too many hidden layers with few hidden units
cause a catastrophic degradation in performance.

6.2.2 Larger architectures are usually better

We now use the full training set—as defined in Chapter 5—and train various MLPs. The
size of the patches was either 13× 13 or 17× 17. When the patch size was 13× 13, we used
hidden layers with 511 units. When the patch size was 17, we used hidden layers with 2047
units. We varied the number of hidden layers, see Figure 6.2.

Adding hidden layers seems to always help. Larger patch sizes and wider hidden layers
seem to be beneficial. However, the MLP using patches of size 13 × 13 and three hidden
layers of size 511 outperforms the MLP using patches of size 17 × 17 and a single hidden
layer of size 2047.

Is it always beneficial to add hidden layers? To answer this question, we train MLPs with
patches of size 13 × 13 and hidden layers of size 511 with four and five hidden layers, see
Figure 6.3. The MLPs with four and five hidden layers perform well during the beginning of
the training procedure, but experience a significant decrease in performance later on. The
MLP achieving the best performance overall has three hidden layers. We therefore conclude
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Figure 6.4: Using a larger corpus of training data helps.

that it is not always beneficial to add hidden layers.
A possible explanation for the degradation of performance shown in Figure 6.3 is that

MLPs with more hidden layers become more difficult to learn. Indeed, each hidden layer
adds non-linearities to the model. It is therefore possible that the error landscape is complex
and that stochastic gradient descent gets stuck in a poor local optimum from which it is
difficult to escape. In Figure 6.2, we see that an MLP with patches of size 17× 17 and four
hidden layers of size 2047 does not experience the effect shown in Figure 6.3, which is an
indication that deep and narrow networks are more difficult to optimize than deep and wide
networks.

6.2.3 A larger training corpus is always better

We have seen that longer training times lead to better results. Therefore, seeing more
training samples helps the MLPs achieve good results.

We now ask the question: What is the effect of the number of images in the training
corpus? To this end, we have trained MLPs with identical architectures on training sets
of different sizes, see Figure 6.4. We used either the full ImageNet training set or various
subsets (100, 1000 and 10000 images) of the same training set. We see that significant gains
can be obtained from using more training images. In particular, using even 10000 training
images delivers results that are clearly worse than results obtained when training on the full
(∼ 1.8 · 106 image) training set. We also never observe a degradation in performance by
using more training images.

6.2.4 The trade-off between small and large patches

We ask the question: Is it better to use small or large patches? We first restrict ourselves
to situations where the input and output patches are of the same size.

Figure 6.5 shows the results obtained with MLPs with four hidden layers of size 2047
and various patch sizes. We see that up to a patch size of 17 × 17, an increase in patch
size leads to better results. This is in agreement with the findings of Levin and Nadler [68]:
Using a larger support size makes the denoising problem less ambiguous.

However, increasing the patch size further leads to worse results. The results obtained
using patches of size 21 × 21 are worse than those obtained using patches of size 17 ×
17. Using patches of size 25 × 25 leads to results that are still worse and even leads to a
degradation in performance after approximately 108 updates. For patches of size 29× 29 we
observe still worse results and a deterioration of results after approximately 5 · 107 updates.
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Figure 6.5: Larger patches lead to better results, up to a point.
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Figure 6.6: Larger input patches help.

The performance later recovers slightly, but never reaches the levels achieved before the
degradation in performance. For this observation, we provide an explanation similar to the
one provided in section 6.2.2: Larger patch sizes increase the dimensionality of the problem
and therefore also the difficulty. The model is therefore more difficult to optimize when large
patches are used, and stochastic gradient descent may fail.

Therefore, when the input and output patches are of the same size, an ideal patch size
exists (for our architectures, it seems to be approximately 17 × 17). Patches that are too
small result in a denoising function that does not deliver good results, whereas patches that
are too large results in a model that is difficult to optimize.

Larger input than output patches: What happens when we remove the restriction that
the input patches be of the same size as the output patches? We expect bad results when
the output patches are larger than the input patches: This would require hallucinating part
of the patch. A more interesting question is: What happens when the output patches are
smaller than the input patches?

Figure 6.6 shows that using input patches that are larger than the output patches delivers
slightly better results. Using an architecture with even more hidden units leads to even
slightly better results.
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Figure 6.7: For a given input patch size, there exists an ideal output patch size. Output
patches that are too large can create problems.
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Figure 6.8: Too many hidden layers combined with large output patches creates problems.

We now keep the size of the input patches fixed at 39×39 pixels and vary the size of the
output patches, see Figure 6.7. We observe that increasing the size of the output patches
helps only up to a point, after which we observe a degradation in performance. The ideal
output patch size seems to be the same as when the input and output patches are of the
same size (17× 17). Our explanation is again that output patches that are too large result
in a model that is difficult to optimize.

Finally, we investigate if the patch size has an effect on the best choice of architecture.
Figure 6.8 shows the results obtained with different patch sizes and architectures. We see
again that with hidden layers of size 511, using more than three hidden layers creates a
degradation of performance when combined with patches of size 13×13. With hidden layers
of size 1023, four hidden layers combined with input patches of size 39 × 39 and output
patches of size 17 × 17, no degradation in performance is observed. Using the same patch
sizes with six hidden layers of size 1023 quickly results in a degradation in performance.
However, using the same architecture, but using output patches of size 9 × 9 results in no
degradation in performance and even yields the best results in this comparison. We therefore
conclude that it is the combination of deep and narrow networks combined with large output
patches that are the most difficult to optimize.
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Conclusions concerning MLP architectures: We have learned that hidden layers with
more units are always beneficial. Similarly, larger input patches are also always helpful.
However, too many hidden layers may lead to problems in the training procedure. Problems
are more likely to occur if the hidden layers contain few hidden units or if the size of the
output patches is large.

6.2.5 Important gains in performance through “fine-tuning”

In all previous experiments, we observed that the test error fluctuates slightly. We attempt
to avoid or at least reduce this behavior using a “fine-tuning” procedure: We initially train
with a large learning rate and later switch to a lower learning rate. The large learning
rate is supposed to encourage faster learning, whereas the low learning rate is supposed to
encourage more stable results on the test data. Figure 6.9 shows that we can indeed reduce
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Figure 6.9: Fine-tuning improves results and reduces fluctuations in the test error. The
vertical dashed line indicates where the learning rate was switched from 0.1 to 0.001. The
two curves therefore only disagree starting at the dashed vertical line.

fluctuations in the test error using a fine-tuning procedure. In addition, the switch to a
lower learning rate leads to an improvement of approximately 0.05dB on the test set. We
conclude that it is important to use a fine-turning procedure to obtain good results.

6.2.6 Other noise variances: smaller patches for lower noise

Figure 6.10 shows the improvement of the test results (the average result obtained on the 11
standard test images) during training for different values of σ. The test results achieved by
the MLPs is compared against the test results achieved by BM3D. We used input patches
of size 39 × 39, output patches of size 17 × 17 and hidden layers of sizes 3072, 3072, 2559
and 2047. We also experimented with smaller patches (“smaller patches” in Figure 6.10):
Input patches of size 21× 21 and output patches of size 9× 9. In that case, we also used a
somewhat smaller architecture: Four hidden layers of size 2047.

Most MLPs never reach the test results achieved by BM3D because of the relatively bad
performance on image “Barbara”. For σ = 50, we approach the results achieved by BM3D
faster than for σ = 25 and for σ = 25, we approach the results achieved by BM3D faster
than for σ = 10. For σ = 75, we approach the results achieved by BM3D the fastest and
even slightly outperform the results. We see that the gap between our results and those of
BM3D becomes smaller when the noise is stronger. The slower convergence for lower noise
levels can be explained by the fact that the overall error is lower (or equivalently: the PSNR
values are higher), which causes the updates during the training procedure to be smaller.
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BM3D, σ=10
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Figure 6.10: Progress on different noise levels compared to BM3D. The higher the noise
level, the faster the progress.

For σ = 10, better results are achieved with smaller patches. For σ = 25, σ = 50 and
σ = 75, better results are achieved with larger patches. The reason larger patches achieve
better results for σ = 25, σ = 50 and σ = 75 is that larger patches are necessary when the
noise becomes stronger [68]. This implies that it is not necessary to use large patches when
the noise is weaker. Indeed, using patches that are too large can cause the optimization
to become difficult, see section 6.2.4. Therefore, the ideal patch sizes are influenced by the
strength of the noise. We used 21× 21 and 9× 9 patches for σ = 10 and 39× 39 and 17× 17
patches for the other noise levels.

6.3 Training trade-offs for block-matching MLPs

We have seen in Chapter 5 that MLPs can be combined with a block-matching procedure and
that doing so can lead to improved results on some images. In this section, we discuss the
training procedure of block-matching MLPs in more detail. We write (39, 14×13, 4×2047, 13)
to denote a block-matching MLP with a search window of size 39×39 pixels, taking as input
14 patches of size 13 × 13 pixels, four hidden layers with 2047 hidden units each, and an
output patch size of 13× 13 pixels.

6.3.1 Block-matching MLPs can learn faster

We see in Figure 6.11 that progress during training with the block-matching MLPs is similar
to progress with the best MLPs that do not use block-matching. We see an improvement
over the plain MLPs particularly at the beginning of the training procedure. Later on,
the advantage of the block-matching procedure over plain MLPs is less evident. The block-
matching procedure using patches of size 13×13 and a search window of size 39×39 performs
slightly better than the block matching procedure using patches of size 17× 17 and a search
window of size 59 × 59. The search window size of 39 × 39 is the same as the size of the
patches the best-performing plain MLP takes as input. This means that the block-matching
MLP achieving the better results always uses less information as input than the plain MLP
achieving the best results, yet still achieves similar results.

Figure 6.12 compares the progress of the winning plain MLP to the block-matching
MLP using patches of size 13 × 13 on image “Barbara” against the remaining 10 of the 11
standard test images. We see that on image “Barbara”, the block-matching MLP has a clear
advantage, particularly at the beginning of the training procedure. On the remaining images,
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Figure 6.11: Block matching helps at the beginning of the training procedure.
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Figure 6.12: Block matching helps particularly for image Barbara.
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the advantage is less clear. Still, the results at the beginning of the training procedure are
better for the block-matching MLP.

This answers our question: The block-matching procedure helps on images with regular
structure. However, the improvement is rather small at the end of the training procedure.

6.3.2 Are block-matching MLPs useful on all noise levels?

We train MLPs in combination with the block matching procedure on noise levels σ = 10,
σ = 50 and σ = 75. We again use k = 14 and patches of size 13× 13.
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Figure 6.13: Progress on different noise levels compared to BM3D. Block-matching is the
most useful at σ = 25 and σ = 50.

Figure 6.13 shows the progress during training for the different noise levels. For σ = 10,
the block-matching procedure seems to present no advantage over the best MLP without
block-matching procedure. For σ = 25 and σ = 50, the block-matching procedure provides
better results at the beginning of the training procedure. In the later stages of the training
procedure, it is not clear if the block-matching procedure achieves superior results. For
σ = 75, the block-matching procedure presents no clear advantage at the beginning of the
training procedure and also achieves worse results than the plain MLP in the later stages of
the training procedure. A possible explanation for the deterioration of the results achieved
with block-matching compared to plain MLPs at increasing noise levels is that it becomes
more difficult to find patches similar to the reference patch. A possible solution would be
to employ a coarse pre-filtering step such as the one employed by BM3D.

6.4 Analysis of hidden activation patterns

We have seen in Chapter 5 that our method can achieve good results on medium to high
noise levels. We have also shown which steps are important and which are to be avoided
in order to achieve good results. We now ask the question: Can we gain insight into how
the MLP works? An MLP is a highly non-linear function with millions of parameters. It
is therefore unlikely that we will be able to perfectly describe its behavior. This section
describes a set of experiments that will nonetheless provide some insight about how the
MLP works.

Definitions: Weights connecting the input to one unit in the first hidden layer can be
represented as a patch. We refer to these weights as feature detectors because they can be
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interpreted as filters. The weights connecting one unit in the last hidden layer of an MLP to
the output can also be represented as a patch and we will refer to these as feature generators.

When feeding data into an MLP, we are interested not only in the weights, but also in
the activations, by which we mean the values taken by the hidden units, due to the input.
We will attempt to find inputs maximizing the activation of a specific hidden unit and refer
to such an input as an input pattern. Conversely, we refer to the output caused by the
activation of a single hidden unit as an output pattern.

The input pattern maximizing the activation of a hidden unit in the first hidden layer is
the same as the feature detector corresponding to the hidden unit. Also, the output pattern
corresponding to a hidden unit in the last hidden layer is the same as the feature generator
associated to the same hidden unit.

6.4.1 MLPs with a single hidden layer

We start by analyzing an MLP with a single hidden layer. We use an MLP with the
architecture (17×17, 2047, 17×17) for that purpose. Such an MLP is identical to a denoising
auto-encoder with AWG noise [120].

Weights as patches: The feature detectors of this MLP can be represented as patches of
size 17× 17 pixels. The feature generators have the same size of the feature detectors.
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Figure 6.14: Random feature detectors (top) and the corresponding feature generators (bot-
tom) in a trained MLP with one hidden layer.

Figure 6.14 shows some feature detectors (top row) and the feature generators corre-
sponding to each feature detector (bottom row). Scaling of the pixel values was performed
separately for each pair of feature detector and feature generator. The feature detectors are
similar in appearance to the corresponding feature generators, up to a scaling factor. The
feature detectors can be classified into three main categories: 1) feature detectors resembling
Gabor filters 2) feature detectors that focus on just a small number of pixels (resembling a
dot), and 3) feature detectors that look noisy. Most feature detectors belong to the first and
second category. The Gabor filters occur at different scales, shifts and orientations. Similar
dictionaries have also been learned by other denoising approaches. It should be noted that
MLPs are not shift-invariant, which explains why some patches are shifted versions of each
other. Similar features have been observed in denoising auto-encoders [120].

In Figure 6.15, the feature detectors have been sorted according to their standard devi-
ation. We see that the feature detectors that look noisy have the lowest standard deviation.
The noisy feature detectors therefore merely look noisy because of the normalization accord-
ing to which they are displayed. Because the noisy-looking feature detectors have different
mean values, we can interpret them as various DC-component detectors.

Denoising auto-encoders are sometimes trained with “tied” weights: The feature detec-
tors are forced to be identical to the output bases. We observe that the learned feature
detectors and feature generators look identical up to a scaling factor without the tying of
the weights. This suggests that the intuition behind weight tying is reasonable. However,
our observation also suggests that better results might be achieved if the feature detectors
and feature generators are tied, but allowed to have different scales.
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Figure 6.15: Selection of feature detectors in an MLP with a single hidden layer sorted
according to their standard deviation. We chose every 15th feature detector in the sorted
list. The sorting is from left to right and from top to bottom: The top-left patch has the
highest standard deviation, the bottom-left patch the lowest.

Activations: The MLP learned a dictionary in the output layer resembling the dictionaries
learned by sparse coding methods, such as KSVD. This suggests that the activations in the
last hidden layer might be sparse. We therefore ask the question: What is the behavior of
the activations in the hidden layer?
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Figure 6.16: (a) Histograms of the activations in the hidden layer of a one hidden layer
MLP. (b) Spectrum of the feature detectors and feature generators.

Figure 6.16a shows a histogram of the activations of all hidden units in both a trained
MLP and a random MLP, evaluated on the 500 images in the Berkeley dataset. The activa-
tions are centered around zero in the case of the random MLP. The activations in the trained
MLP however are almost completely binary: The activations are either close to −1 or close
to 1, but seldom in between. This is an indication that the training process is completed:
The activities lie on the saturated parts of the tanh transfer function, where the derivative
is close to zero. The gradient that is back-propagated to the first layer is therefore mostly
zero. This also answers our question: The activations are not sparse. We will provide a
further interpretation for this observation later in this section.

Entropy: To measure the usefulness of neurons, we estimate the information entropy of
their activation distributions. We plot the mean activations of hidden units against their
entropy H(X) = −

∑N
i=1 p(xi) log2 p(xi) with four bins of equal size in Figure 6.17a. We
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Figure 6.17: (a) In a trained MLP, units with small mean tend to have high entropy. This
means that these units are highly active; only their mean activation is close to 0. (b) In an
untrained MLP, no units have high mean.

repeat the experiment for an untrained MLP in Figure 6.17b. We see that units with high
entropy tend to have a low absolute mean, and that units with low absolute mean have high
entropy. The reverse is also true: units with low entropy have a high absolute mean and
units with a high absolute mean have low entropy. The entropy of the units in a random
MLP is higher than in a trained MLP. This is explained by the fact that the random MLP
has no units with high absolute mean. These observations allow us to conclude that the
units that have a mean close to 0 also have a binary behavior: They are either 1 or −1
and seldom have a value in between. In fact, we can say that these units take value 1 in
approximately 50% of the cases and value −1 in the remaining cases. They therefore have
a high entropy.
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Figure 6.18: Feature detectors of the units with the highest (top) and lowest (bottom)
entropy.

Figure 6.18 shows the feature detectors of the units with the highest and lowest entropy.
The feature detectors with the lowest entropy all resemble high-frequency Gabor filters of
different positions and orientations. A possible explanation for their low entropy is that
these filters are highly selective. Only few patches cause these filters to activate.

Weight spectrum: We perform an SVD-decomposition of the weight matrices of both the
trained and the random MLP and plot the spectrum of the singular values, see Figure 6.16b.
For the random MLP, we omit the spectrum of the feature generators because its shape is
identical to the spectrum of the feature detectors. This is due to the initialization procedure
and symmetrical architecture.
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The similar shape of the spectra in the trained MLP was expected: the feature detectors
and feature generators are similar in appearance, see Figure 6.14. The larger singular values
for the feature detectors is a reflection of the fact that the norms of the feature detectors is
larger than the norm of the feature generators (also seen in Figure 6.14).

The spectrum for both the feature detectors and the feature generators is relatively flat,
which is an indication that the feature detectors are diverse: Strong correlations between
feature detectors would cause small singular values. The fact that there are no singular
values with value zero means that the output bases matrix has full rank. The spectrum of
the random MLP is even flatter: it also has full rank. This means that the output bases of
both the trained and the random MLP are able to approximate any patch.
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Figure 6.19: (a) Many hidden units are strongly correlated when image data is given as
input. (b) The hidden units are not strongly correlated when noise is given as input.

Activation correlations: Figure 6.19a shows the covariance matrix between the 200 hidden
units of the trained MLP with the highest variance, when image data is provided as input.
We see that activations between units are highly correlated. This is a reflection of the fact
that many of the features detected by the filters tend to occur simultaneously in image
patches. Figure 6.19b shows that this observation does not hold when noise is provided as
input.
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Figure 6.20: (a) Applying a squashing function on a normally distributed vector with high
variance creates a binary distribution. (b) AWG noise with σ = 25 will cause mostly binary
activations in the hidden layer.
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How do the binary codes arise? We observed in Figure 6.16a that the codes in the hidden
layer are almost completely binary. This observation is surprising: The binary distribution
was not explicitly enforced and the distribution of activations is usually different [7]. A
possible explanation would be if the activities prior to the application of the tanh-function
have high variance. Applying the tanh-function on a normally-distributed vector with high
variance indeed creates a binary distribution, see Figure 6.20a.

Is this explanation plausible? A supporting argument is that the feature detectors shown
in Figure 6.14 have high norm compared to their corresponding output bases. The high norm
of the filters could cause high activations in the hidden layers.

We now feed AWG noise with σ = 25 into the MLP. The histograms of the activations
prior and after application of the tanh-layer are shown in Figure 6.20b. We observe that the
activations before the tanh-layer indeed have high variance and that the activations after the
tanh-layer are indeed mostly binary. We conclude that the binary activities in the hidden
layer are due to activities with high variance prior to the tanh-layer, which are in turn due
to feature detectors with high norm.
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Figure 6.21: The tanh-layer has a denoising effect due to saturation.

How is denoising achieved? We have made a number of observations regarding the be-
havior of the MLP but have not yet explained why the MLP is able to denoise. Is the
binarization effect observed in Figure 6.20 an important factor? To answer this question, we
feed an image patch containing only AWG noise with σ = 25 through the MLP. We com-
pare the output when the tanh-layer is applied to when the tanh-layer is not applied, see
Figure 6.21. Without tanh-layer, the output is more noisy than the input. With tanh-layer
however, the output is less noisy than the input. We can therefore conclude that the same
thresholding operation responsible for the binary codes is also at least partially responsible
for the denoising effect of the MLP.

Thresholding for denoising has been thoroughly studied and dates back at least to “cor-
ing” for reducing television noise [98]. Typically, a thresholding operation is performed in
some transform domain, such as a wavelet domain [94]. However, the thresholding oper-
ations typically affect small values most strongly: In the case of hard thresholding, values
close to zero are set to zero and all other values are left unchanged. In the case of soft
thresholding, all values are reduced by a fixed amount. Then, values close to zero are set to
zero. In the MLP, the situation is reversed: Values close to zero are left unchanged. Only
large absolute values are modified by the tanh-layer. We call this effect saturation.

We have seen that the saturation of the tanh-layer can explain why noise is reduced.
However, denoising can always be trivially achieved by removing both noise and image
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Figure 6.22: Denoising in action: The input maximizes the activity of one feature detector
(hidden neuron). Other feature detectors are also strongly activated. After the tanh-layer,
the noise has almost no effect on the feature detectors that are highly active. The activations
in b) are sorted and the activations in c) use the same sorting. Denoising happens mostly
in the blue areas in c).
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Figure 6.23: Denoising through hard-thresholding: Setting the less import feature detectors
to 0 also produces a denoising effect. The activations in b) are sorted and the activations in
c) use the same sorting.
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information. We therefore ask the question: Why are image features preserved? We proceed
by example. As input, we will use the feature detected by one of the feature detectors. As
a comparison, we will use as input a noisy version of this feature, see Figure 6.22a. The
clean input has the effect of maximizing the activity of its corresponding feature detector
prior to the tanh-layer, see Figure 6.22b. Other feature detectors also have a high value,
which should be expected, given the high covariance of the hidden units, see Figure 6.19.
We see that the noisy input creates a hidden representation that looks quite different from
the one created from the clean input: The noise is still clearly present. After application of
the tanh-layer, the noise is almost completely eliminated on the feature detectors with high
activity, see Figure 6.22c. This is due to the saturation of the tanh-layer. The outputs look
similar to the clean input, see Figure 6.22d. In particular, the noise from the noisy input
has been attenuated.

We repeat the experiment performed in Figure 6.22, but this time hard-threshold the
hidden activities: Activities in the hidden layer prior to the tanh-layer with an absolute
value smaller than 1 are set to 0. Doing so still produces a denoising effect, see Figure 6.23.
This observation brings us to the conclusion that the feature detectors with a high activity
are the more important ones. This is convenient, because the noise on the feature detectors
with high activities disappears due to saturation.

We summarize the denoising process in a one-hidden-layer MLP as follows. Noise is
attenuated through the saturation of the tanh-layer. Image features are preserved due to
the high activation values of the corresponding feature detectors.

Relation to stacked denoising autoencoders (SDAEs): MLPs with a single hidden-layer
which are trained on the denoising task are exactly equivalent to denoising autoencoders.
Denoising autoencoders can be stacked into SDAEs [120]. The difference between SDAEs
and MLPs with multiple hidden layers is that SDAEs are trained sequentially: One layer is
trained at a time and each layer is trained to denoise the output provided by the previous
layer (or the input data in the case of the first layer). While our MLPs are trained to
optimize denoising performance, SDAEs are trained to provide a useful initialization for a
different supervised task.

It has been suggested by Bengio et al . [8] that deep learning is useful due to an optimiza-
tion effect: Greedy layer-wise training helps to optimize the training criterion. However,
later work contradicts this interpretation: Erhan et al . [32] suggest that SDAEs and other
deep pre-trained architectures such as deep belief nets (DBNs) are useful due to a regular-
ization effect: Supervised training of an architecture (especially a deep one) using stochastic
gradient descent is difficult because of an abundance of local minima, many of them poor
(in the sense that they do not generalize well). The unsupervised pre-training phase im-
poses a restriction on the regions of parameter space that stochastic gradient descent can
explore during the supervised phase and reduces the number of local minima that stochastic
gradient descent can fall into. Pre-training thus initializes the architecture in such a way
that stochastic gradient descent finds a better basin of attraction (again in the sense of
generalization).

The fact that activations in the hidden layers of a SDAE are almost completely binary
(see Figure 6.16) and relatively high entropy (see Figure 6.17a) was not mentioned by Erhan
et al . [32], but is in agreement with the regularization interpretation: The fact that the de-
noising task forces the hidden representations to be binary is a restriction and therefore also
a form of regularization. In addition, information about the input should be preserved in
order for the hidden representations to be useful. Information about the input is preserved
by virtue of the denoising task: The hidden representations have to contain sufficient infor-
mation to reconstruct the uncorrupted input. The fact that the hidden units have relatively
high information entropy is an additional indication that information is preserved.

We have not answered the question if the binary restriction is better than a more classical
form of regularization, such as `1 or `2 regularization. However, Erhan et al . [32] suggest
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that pre-training achieves a form of regularization that is different from and indeed more
useful than `1 or `2 regularization on the parameters (`2 regularization on the weights is
approximately equivalent to `2 regularization on the activations). Another argument is that
binary vectors are easier to manipulate (e.g. classify) than vectors with small norm.

Relation to restricted Boltzmann machines and deep belief nets: The binary activations
in the hidden layer of our MLP are reminiscent of restricted boltzmann machines (RBMs)
and deep belief nets (DBNs), which usually employ stochastic binary activations during the
unsupervised training phase [53]. An additional similarity is that it has been shown that
DBNs and stacked denoising autoencoders extract similar features when trained on either
hand-written digits or natural image patches [33].
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Figure 6.24: Some filters learned by an RBM trained on natural image data (in an unsuper-
vised fashion) with Gaussian visible units, patches of size 17× 17 and 512 stochastic binary
hidden units. The filters resemble those learned by an MLP on the denoising task.

We trained an RBM with Gaussian visible units on image patches of size 17× 17 using
contrastive divergence [51, 52]. Figure 6.24 shows that the filters learned by the RBM
are similar in appearance to the filters learned by our one-hidden layer MLP, which is in
agreement with the findings of Erhan et al . [33].
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Figure 6.25: (a) Histogram of activations in the hidden layer of an RBM trained in an
unsupervised fashion on natural image patches. (b) Histogram of activations in the hidden
layers of a DBN trained in an unsupervised fashion on handwritten digits [54].

The activations of the RBM are binary and stochastic during the unsupervised pre-
training phase. It is possible to use the weights learned during pre-training for a supervised
task, in which case the hidden units are allowed to take real values. After unsupervised
learning of our RBM, we observe the distribution of the real-valued activations in the hidden
layer, see Figure 6.25a. The activations lie between 0 and 1 instead of between −1 and 1
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for our MLP because of the use of the logistic function instead of tanh. We see that the
activations are sparse and do not show the binary behavior exhibited by our MLP.

We also used the code provided by Hinton and Salakhutdinov [54] to train a deep belief
net (DBN) on hand-written digits. After pre-training, the activation in all layers is also
sparse, see Figure 6.25b. We see that sparsity occurs in the hidden layers even when not
explicitly enforced, as proposed by Hinton [52].

Summary: MLPs with one hidden layer denoise by detecting features in the noisy input
patch. Each feature detector responds maximally to a single feature, but usually many
features are detected simultaneously (see Figure 6.19). The denoised output corresponds to
a weighted sum of each feature detector, see Figure 6.14, where the weight depends on the
response of the feature detector. The features are mostly Gabor filters of different scales,
locations and orientations. Similar features are observed when training other models on
natural image data, such as RBMs, see Figure 6.24. The features are informative in the sense
that many hidden units have high information entropy, see Figure 6.17b. Noise is removed
through saturation of the tanh-layer. Saturation is achieved through feature detectors with
high norm, which in turn leads to activations with high variance in the hidden layer before
the tanh-layer and mostly binary activations after the tanh-layer, see Figure 6.20. The
binary distribution of activations is surprising given the fact that it has not been explicitly
enforced, but is useful for denoising and also fits well into the regularization interpretation
of denoising auto-encoders proposed by Erhan et al . [32].

6.4.2 MLPs with several hidden layers

The behavior of MLPs with a single hidden layer is easily interpretable. However, we have
seen in Section 6.2.2 that MLPs with more hidden layers achieve better results. Unfortu-
nately, interpreting the behavior of an MLP with more hidden layers is more complicated.
The weights in the input layer and in the output layer can still be represented as image
patches, but the layer or layers between the input and output are not so easy to interpret.
MLPs with a single hidden layer are identical to denoising autoencoders. This is not true
anymore for MLPs with more hidden layers.
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Figure 6.26: Random selection of weights in the input layer (top) and output layer (bottom)
for an MLP with two hidden layers.

Two hidden layers: We will start by studying an MLP with architecture (17× 172, 2047,
2047,17 × 172). We repeat the experiment we performed on an MLP with a single hidden
layer and look at the feature detectors and feature generators of the MLP, see Figure 6.26.
We notice that the feature generators look relatively similar to the output bases of the
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MLP with a single hidden layer. However, the feature detectors now look different: Many
look somewhat noisy (perhaps resembling grating filters) or seem to extract a feature that
is difficult to interpret. Intuition would suggest that these filters are in some sense worse
than those learned by the single hidden layer MLP. However, we have seen in Figure 6.2
that better results are achieved with the MLP with two hidden layers than with one hidden
layer.
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Figure 6.27: Random selection of weights in the input layer (top) and output layer (bottom)
for an MLP with four hidden layers.

Four hidden layers: We look at the feature detectors and the output bases of an MLP with
architecture (17 × 17, 2047, 2047, 2047, 2047, 17 × 17), see Figure 6.27. The output bases
resemble those of the MLPs with one and two hidden layers. The feature detectors however
look still noisier than those of the MLP with two hidden layers. The results achieved with
the MLP with four hidden layers are again better than those achieved with a two hidden
layer MLP, see Figure 6.2. We conclude that feature detectors that look noisy or are just
difficult to interpret do not necessarily lead to worse denoising results.
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Figure 6.28: Feature detectors (top) and outputs (bottom) corresponding to each feature
detector, using an MLP with two hidden layers. The detection of one feature causes the
generation of a similar feature in the output.

Outputs corresponding to feature detectors: In the MLP with a single hidden layer, there
was a clear correspondence between feature detectors and feature generators: The feature
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Figure 6.29: Feature detectors (top) and outputs (bottom) corresponding to each feature
detector, using an MLP with four hidden layers. The detection of one feature causes the
generation of a similar feature in the output.
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Figure 6.30: Features discovered through activation maximization (top) and corresponding
feature generators (bottom), using an MLP with two hidden layers. The detection of one
feature causes the generation of a similar feature in the output.

generators looked identical to their corresponding feature detectors. This correspondence is
lost in MLPs with more hidden layers, due to the additional hidden layer separating feature
detectors from output bases. Can we still find a connection between feature detectors and
corresponding outputs? To answer this question, we activate a single unit in the first hidden
layer: The unit is assigned value 1 and all other units are set to 0. We then perform
a forward pass through the MLP, but completely ignore the input of the MLP. Doing so
provides us with an tentative answer to the question: What output is caused by the detection
of one feature? The answer is only tentative because several features are usually detected
simultaneously. The activation of more hidden units can cause additional non-linear effects
due to the tanh-functions in the MLP. Figure 6.28 and 6.29 show the outputs obtained with
an MLP with two and four hidden layers, respectively. Also shown are the feature detectors
corresponding to the hidden units causing the outputs. We observe a similar correspondence
between feature detectors and outputs as in the case of a single hidden layer MLP. The effect
is more visible with the MLP with two hidden layers than with the MLP with four hidden
layers. The fact that the outputs do not perfectly correspond to their feature detectors can
be explained by the fact that during training, features are never detected separately, but
always in combination with other features.
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Figure 6.31: Features discovered through activation maximization (top) and corresponding
feature generators (bottom), using an MLP with four hidden layers. The detection of one
feature causes the generation of a similar feature in the output.

Inputs maximally activating single output bases: Which inputs cause the highest acti-
vation for each hidden neuron? Answering this question should tell us which features the
MLP responds to. We answer this question using activation maximization, proposed by Er-
han et al . [33]. Activation maximization is a gradient-based technique for finding an input
maximizing the activation of a neuron. We use activation maximization with a step size of
0.1. We initialize the patches with samples drawn from a normal distribution with mean 0
and unit variance. We limit the norm of the patch to the norm of the initial patch.

We apply activation maximization on neurons in the last hidden layer of the MLPs
with two and four hidden layers. The procedure indeed finds interesting features, see Fig-
ures 6.30 and 6.31. Even more interesting is the fact that the features found through
activation maximization bear a strong resemblance to the feature generators connected to
the same hidden neuron.
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Figure 6.32: Input patterns discovered through activation maximization (top) and output
patterns created using one active unit in the hidden layer (bottom), using an MLP with four
hidden layers. We used the third hidden layer. We see a correspondence between the input
and output patterns.

Input patterns vs. output patterns: We also observe a correspondence between the input
patterns discovered through activation maximization and output patterns created by acti-
vating a single hidden neuron in deeper layers. Figure 6.32 demonstrates this correspondence
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in the third hidden layer of an MLP with four hidden layers.

Summary: MLPs with more hidden layers tend to have feature detectors that are not easily
interpretable. In fact, one might be tempted to conclude that they are inferior in some way
to the feature detectors learned by an MLP with a single hidden layer, because many of the
feature detectors look noisy. However, the denoising results obtained with MLPs with more
hidden layers is superior. The visual appearance of the feature detectors is therefore not a
disadvantage. The better denoising results can be explained by the higher capacity of MLPs
with more hidden layers. MLPs with more hidden layers also seem to operate according to
the same principle as MLPs with a single hidden layer: If a feature is detected in the noisy
patch, a weighted version of the feature is added to the denoised patch.

6.4.3 MLPs with larger inputs

We now consider the MLP that provided the best results on AWG noise with σ = 25, see
Figure 6.2. The MLP has architecture (39× 39, 3072, 3072, 2559, 2047, 17× 17). The main
difference between this MLP and the previous ones is that the input patches are larger than
the output patches. An additional difference is the somewhat larger architecture.
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Figure 6.33: Random selection of weights in the input layer (top) and output layer (bottom)
of the MLP providing the best results: (39, 3072, 3072, 2559.2047, 17). This MLP has input
patches of size 39× 39 and output patches of size 17× 17.

Feature detectors and feature generators: Figure 6.33 shows a set of feature detectors
and feature generators for the MLP with larger input patches. The feature generators look
similar to those learned by other MLPs. However, the feature detectors again look somewhat
different: many seem to focus on the center area of the input patch. In addition, many look
noisy. The fact that many feature detectors focus on the center area of the input patch can
be explained by the fact that the output patches are smaller than the input patches. The
target patches correspond to the center region of the input patches. Correlations between
pixels fall with distance, which implies that the pixels at the outer border of the input patch
should be the least important for denoising the center patch.

Activations: The activations in the last hidden layer are almost completely binary, see
Figure 6.34a. This effect was also observed on an MLP with a single hidden layer, but
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Figure 6.34: (a) Histograms of the activations in the last hidden layer. (b) Histograms of
the activations in the first three hidden layers.

is now even more pronounced. The activations in the other hidden layers are not binary:
They frequently lie somewhere between −1 and 1, see Figure 6.34b and resemble a typical
distribution [7]. The denoised output patches are therefore essentially constructed from
binary codes weighting elements in a dictionary.
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Figure 6.35: Information entropy of the units in the different hidden layers. All units in the
last hidden layer have high entropy.

Entropy: An MLP with a single hidden layer had some hidden units with entropy close to
zero. Is this also the case for MLPs with more hidden layers? We evaluate the information
entropy of the units in the various hidden layers, see Figure 6.35. We again used four bins
of equal size. We also compare against a randomly initialized MLP. We observe that the
entropy is lower for the trained MLP than for the randomly initialized MLP, which was also
observed on an MLP with a single hidden layer. However, this time, all the units in the last
hidden layer have high information entropy. In the remaining layers, some units have low
information entropy.

Figure 6.36 shows the feature detectors connected to the units with highest and lowest
entropy, respectively. Figure 6.37 shows the feature generators with the highest and lowest
entropy, respectively. The feature detectors with the highest entropy look different from the
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Figure 6.36: Feature detectors of the units with the highest (top) and lowest (bottom)
entropy.
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Figure 6.37: Feature generators of the units with the highest (top) and lowest (bottom)
entropy.

feature detectors with the lowest entropy. The latter all look similar: All are noisy and seem
to loosely focus on a region in the center of the patch. The feature detectors with the highest
entropy look more clearly defined. For the feature generators, no clear difference is observed.
This is perhaps due to the fact that all output bases have high information entropy. The
feature detectors with the lowest entropy almost always have the same activation value and
are therefore probably also not very helpful in terms of denoising results.

Approximation ability: We have seen that the MLP does not perform as well as other
methods on the image “Barbara”. We now ask the question: Is the dictionary formed by
the last layer of the MLP the reason why some images cannot be denoised well? In other
words, is it possible to approximate any image patch arbitrarily well using that dictionary,
or are there images that are difficult to approximate? An additional constraint is that the
code vector weighting the dictionary is not allowed to contain values below −1 or above 1
due to the tanh layer.

To answer this question, we try to approximate images patch-wise using the dictionary
formed by the last layer. In other words, we try to approximate each image patch x of a
clean image using our dictionary D, and proceed in a sliding-window manner. We average
in the regions of overlapping patches. Formally, we solve the following problem:

min ||x−Dα||2 s.t.− 1 � α � 1. (6.1)

Table 6.1 lists the results obtained on the 11 standard test images, as well as one image
containing only white Gaussian noise with µ = 127.5 and σ = 25 (row “Noise”). We see
that all images (including the noise image) can be almost perfectly approximated, though
the result on image Barbara is slightly worse than on other images. We therefore conclude
that the dictionary in the last layer by itself cannot be the reason why some images are not
denoised well. Any image can be well approximated using the dictionary and codes with

147



image name PSNR

Barbara 127.45dB
Boat 187.76dB
Cameraman 166.00dB
Couple 192.58dB
Fingerprint 198.12dB
Hill 192.05dB
House 195.68dB
Lena 192.19dB
Man 190.21dB
Montage 174.14dB
Peppers 189.49dB
Noise 161.28dB

Table 6.1: Ability of the dictionary to approximate images.

0 50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

singular values

v
a

lu
e

spectrum of the output weight matrix

 

 

trained MLP

randomly initialized MLP

Figure 6.38: Spectrum of the output bases.

values in range from -1 to 1.
A related observation is that the weights in the last layer have no zero singular values,

see Figure 6.38. This implies that the matrix has full rank and can therefore approximate
any patch, when the lower- and upper-bound constraints are disregarded. We also observe
that the spectrum is relatively flat, which was also the case for the MLP with a single hidden
layer. This implies that the output bases are diverse.

Combining the dictionary with sparse coding: Dictionary-based methods for image de-
noising such as KSVD typically denoise by approximating a noisy image patch using a sparse
linear combination of the elements in the dictionary. More formally, one attempts to solve
the following problem:

min ||α||0 s.t. ||y −Dα||2 ≤ ε (6.2)

where y is a noisy image patch, ε is a pre-defined parameter and || · ||0 refers to the `0
pseudo-norm. Approximate solutions to this problem can be found using OMP [89]. The
denoised patch x̂ is given by x̂ = Dα. Denoising is performed in a sliding-window manner
and averaging is performed where patches overlap.

We ask the question: Can the dictionary learned by the MLP be used in combination
with this sparse coding approach? We denoise the 11 standard test images with AWG noise,
σ = 25 using the dictionary learned by the MLP and solve equation (6.2) approximately
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image KSVD [1] MLP “MLP + OMP”

Barbara 29.49 dB 29.52dB 28.23dB
Boat 29.24 dB 29.95dB 28.93dB
Cameraman 28.64 dB 29.60dB 28.32dB
Couple 28.87 dB 29.75dB 28.66dB
Fingerprint 27.24 dB 27.67dB 26.88dB
Hill 29.20 dB 29.84dB 28.95dB
House 32.08 dB 32.52dB 30.12dB
Lena 31.30 dB 32.28dB 30.65dB
Man 29.08 dB 29.85dB 28.95dB
Montage 30.91 dB 31.97dB 30.21dB
Peppers 29.69 dB 30.27dB 29.08dB

Table 6.2: Using the MLP’s dictionary in combination with OMP.

using OMP. We set ε similarly to KSVD [1]: ε = n((Cσ)2), where n is the dimensionality of
the patches (289) and C is a hyper-parameter. We found the best value of C to be 1.05. We
normalized all columns of D to have unit norm. The results of this approach are summarized
in Table 6.2. The PSNR of the noisy images is approximately 20.18dB.

The denoising results of this approach are not very good. We therefore conclude that
the dictionary’s ability to denoise is strongly dependent on the codes provided to it. The
first three hidden layers of the MLP serve as a mechanism for creating good codes for the
last layer.

Inputs maximizing the activation of neurons: Which inputs cause the highest activation
for each neuron? We answer this question using two approaches: (i) Activation maximization
[33] and (ii) evaluating the activation values for a large number of (non-noisy) image patches.

We perform activation maximization as described in section 6.4.2. We also run the
MLP on a large number of noise-free natural image patches. For each neuron, we save the
input maximizing its absolute activation. We used 6768 natural images, each containing
many thousand patches. Figure 6.39 shows the input patterns found through activation
maximization as well as the input patches found by inspecting a larger number of natural
image patches. We make a number of observations.

• Focus on the center part: The patterns found through activation maximization
mostly focus on the center part of the patches. This intuitively makes sense: The
most important part of the input patch is expected to be the area covered by the
output patch. In addition, pixel correlations fall with distance, so pixels that are
further away are expected to be less interesting. There are exceptions however: Some
patches seem to focus particularly on the patch border.

• Gabor filters: Many input patterns resemble Gabor filters. This is true for all
hidden layers, but particularly for hidden layers two and four. We also observed this
phenomenon in the output layer weights, see Figure 6.33.

• Random looking patches: Many input patterns look as if the pixels were set ran-
domly. This is particularly true in hidden layer three.

• Correlation to natural image patches: Some input patterns found through ac-
tivation maximization correlate well with patches found through exhaustive search
through a set of natural image patches. For example the patches 6 and 7 from the
right in the upper row of hidden layer four. In many cases however, it is not clear that
the two procedures find correlating patches. The fourth hidden layer patches seem
to indicate that many neurons respond to features with a highly specific location and
orientation.
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(a) Input patterns maximizing the activation of neurons in the second hidden layer.

(b) Natural image patches maximizing the absolute activation of neurons in the second
hidden layer.

(c) Input patterns maximizing the activation of neurons in the third hidden layer.

(d) Natural image patches maximizing the absolute activation of neurons in the third
hidden layer.

(e) Input patterns maximizing the activation of neurons in the fourth hidden layer.

(f) Natural image patches maximizing the absolute activation of neurons in the fourth
hidden layer.

Figure 6.39: What features does the MLP respond to?
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6.4.4 Comparing the importance of the feature detectors

Some of the feature detectors look random or noisy, see Figure 6.33. Are all the feature
detectors useful or are the noisy looking filters less useful? We answer this question by
observing the behavior of the MLP when a set of feature detectors is removed (in other
words, when only a subset of feature detectors is used). We evaluate the average performance
of the network on the 11 standard test images. We remove a feature detectors by replacing
its weights with the average value of the feature detector.
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Figure 6.40: Most (top) and least (bottom) important feature detectors (using 1500 feature
detectors).

We use an iterative procedure during which 1500 feature detectors are chosen for each
iteration. The mean PSNR obtained is assigned to the feature detectors used during that
iteration. We average over iterations. The feature detectors yielding the best results (on
average) are shown in the top row of Figure 6.40 and the feature detectors yielding the worst
results are shown in the bottom row.

It seems that the feature detectors yielding good results on average are more easily
interpretable than the ones yielding worse results. The feature detectors yielding good
results seem to focus on large-scale features, whereas the filters yielding worse results look
more noisy.

6.4.5 Effect of the type and strength of the noise on the feature detec-
tors and feature generators

All observations we have made on the feature detectors and feature generators of the MLPs
were made on MLPs trained to remove AWG noise with σ = 25. We will now make a number
of observations for different types and strengths of noise.

How does the strength of the noise affect the learned weights? Figure 6.41
and Figure 6.42 show the feature detectors and feature generators for σ = 10 and σ = 75,
respectively. The feature generators look similar for the two noise levels. However, the
feature detectors look different: For σ = 10, the feature detectors almost always focus
on the area covered by the output patch, whereas for σ = 75, the feature detectors also
consider pixels that are further away. This is in agreement with the findings of Levin and
Nadler [68]: When the noise is stronger, larger input patches are necessary to achieve good
results. We already provided a similar explanation in Section 6.2.6. This also implies that
it is unnecessary to use large input patches when the noise is weak and explains why we
achieved better results with smaller patches for σ = 10, see Figure 6.10.

How does the type of the noise affect the learned weights? Figures 6.43, 6.44 and 6.45
show the feature detectors and feature generators learned with stripe noise, salt-and-pepper
noise and JPEG artifacts, respectively. All patches in these figures are of size 17× 17. The
input weights are strongly affected by the type of the noise: For horizontal stripe noise,
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Figure 6.41: Random selection of weights in the input layer (top) and output layer (bottom)
for σ = 10
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Figure 6.42: Random selection of weights in the input layer (top) and output layer (bottom)
for σ = 75
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Figure 6.43: Random selection of weights in the input layer (top) and output layer (bottom)
for stripe noise
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Figure 6.44: Random selection of weights in the input layer (top) and output layer (bottom)
for salt and pepper noise
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Figure 6.45: Random selection of weights in the input layer (top) and output layer (bottom)
for JPEG noise

the feature detectors often have horizontal features that also look like stripes. For salt-
and-pepper noise, the feature detectors are often filters focussing on long edges. For JPEG
artifacts, the feature detectors are close in appearance to the output weights. The feature
generators are also somewhat affected by the type of the noise. This is especially visible for
stripe noise, where the feature generators seem to sometimes also contain stripes. It was
also observed by Vincent et al . [120] that the type of the noise has a strong effect of the
learned weights in denoising autoencoders.
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Figure 6.46: Block matching output weights

6.4.6 Block-matching filters

Figure 6.46 shows the feature generators learned by the MLP with block-matching, using
k = 14 and patches of size 13× 13. The feature generators look similar to those learned by
MLPs without block-matching.

Figure 6.47 shows a selection of feature detectors learned by the MLP with block-
matching. The left-most patch shows the filter applied to the reference patch, and the
horizontally adjacent patches show the filters applied to the corresponding neighbor patches.
The horizontally adjacent patches all connect to the same hidden neuron. We see that the fil-
ters applied to the neighbor patches are usually similar to the filters applied to the reference
patch. This observation should not be surprising: The updates of the weights connecting
the input patches to a hidden neuron are defined by (i) the gradient at the hidden neuron
and (ii) the value of the input pixels. Hence, if the value of the input pixels are similar (this
is ensured by the block-matching procedure), the weight updates are also similar.
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Figure 6.47: Block matching input weights

6.5 Discussion and Conclusion

In Chapter 5, we have shown that it is possible to achieve state-of-the-art image denoising
results using MLPs. In this chapter, we have shown how this is possible. In the first part of
this chapter, we have discussed which trade-offs are important during the training procedure.
In the second part of this chapter, we have shown that it is possible to gain insight about
the inner working of the trained MLPs by analysing the activation patterns on the hidden
units.

How to train MLPs: We have trained MLPs with varying architectures on datasets of
different sizes. We have also varied the sizes of the input as well as of the output patches.
The observations made on these experiments allow us to make a number of conclusions
regarding image denoising with MLPs: (i) More training data is always good, (ii) more
hidden units per hidden layer is always good, (iii) there is an ideal number of hidden layers
for a given problem and a given number of hidden units per hidden layer. Going above the
ideal number of hidden layers can lead to catastrophic degradations in performance, (iv)
increasing the output size requires higher-capacity architectures, and finally (v) fine-tuning
with a lower learning rate can lead to important gains in performance.

Other image processing problems such as super-resolution, deconvolution and demosaick-
ing might also be addressed using MLPs, in which case we expect the guidelines described
in this chapter to be useful as well. Other problems unrelated to images might also benefit
from these guidelines. Indeed, we expect that many difficult problems with high dimensional
inputs and outputs could benefit from these insights.

Understanding denoising MLPs: The denoising procedure of MLPs with a single hidden
layer can be briefly summarized as follows. Each hidden unit detects a feature in the noisy
input and copies it to the output patch. Denoising is achieved through saturation of the
tanh-layer. The use of activation maximization [33] and observing outputs obtained by
activating a single hidden unit in an MLP allowed us to make observations concerning
the internal workings of MLPs with several hidden layers. We have seen that MLPs with
several hidden layers seem to work according to the same principle as MLPs with a single
hidden layer: The features required to maximize the activation of a hidden unit are often
remarkably similar to the output caused by the same hidden unit. This observation is true
for each hidden layer.
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Denoising with MLPs requires that the tanh-layer saturates, which naturally gives rise
to binary representations. This is different from RBMs, which force their hidden repre-
sentations to be binary. The fact that the representations are binary lends support to the
regularization interpretation of denoising autoencoders proposed by Erhan et al . [32]. We
also note that binary representations are unusual for MLPs: Other problems do not give
rise to binary representations [7].

As an alternative to binary representations, we consider sparse representations. Sparse
representation in higher dimensional spaces have the well-known benefit of being able to
more easily rely on linear operations for a variety of tasks, see for example [73]. Sparsity has
been proposed as a form of regularization to train deep belief networks, see [97]. Successful
architectures for object recognition [59] also make use of sparse representations, in this case
using a procedure called predictive sparse coding proposed by Kavukcuoglu et al . [60]. In all
cases, achieving sparse representations requires sparsity inducing terms in the optimization
criteria, which makes the optimization procedure more complex. We argue that binary
representations have similar benefits to sparse representations, but that obtaining binary
representations is easier than obtaining sparse representations, using a denoising criterion.

A further similarity between MLPs trained to denoise images and RBMs and denoising
autoencoders is the similarity of the features (such as Gabor filters) learned by all three
architectures. Unrelated approaches such KSVD [1] learn similar features.
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7

Synopsis

In Section 2.12 we proposed to broadly classify denoising methods into two paradigms:
Methods focussing on images and methods focussing on noise. Most existing methods be-
long to the category focussing on images. In this thesis, we have made contributions to
both paradigms: The meta-procedure described in Chapter 3 belongs to the category of
methods focussing on images. The method with a pixel-specific noise model for denoising
astronomical images described in Chapter 4 belongs to the category of methods focussing
on noise. The method based on neural networks described in Chapter 5 also belongs to
the category of methods focussing on images. More precisely, according to the taxonomy
defined in Section 2.12, the method belongs to the sub-category relying on external prior
knowledge about images. Here, we summarize the contributions made by this thesis.

A multi-scale meta-procedure for high noise levels: We observed that many existing
denoising algorithms focus mainly on the high-frequency components of images and do not
handle low frequencies properly. This causes a deterioration of results at higher noise levels.
To improve algorithms that do not properly handle low frequencies, we have presented
in Chapter 3 a procedure in which an existing denoising algorithm is applied at several
scales. The resulting denoised images are then recombined using a procedure resembling a
Laplacian pyramid. We have seen that this approach improves the results achieved by many
algorithms, especially at high noise levels. Some denoising algorithms cannot be improved
using this strategy because they already take a multi-scale approach or use large patch sizes
and therefore handle low frequencies properly. The meta-procedure belongs to the class of
methods focussing on images, but cannot be assigned to a particular sub-category, because
methods belonging to all sub-categories can be combined with the meta-procedure.

Denoising astronomical images: Most denoising algorithms focus on images. However in
some situations, it makes sense to consider the class of denoising methods focussing on noise.
This is the case when the noise has more structure than additive white Gaussian noise. In
Chapter 4 we have seen that such a situation arises in digital photographs of astronomical
objects, where an important source of noise is the so-called dark-current noise. Dark-current
noise is quite different from additive white Gaussian noise, which is the type of noise that
most existing denoising algorithms are designed to remove. In addition, astronomical images
are different in appearance from “natural” images (or images of every-day scenes). To denoise
such images, we have presented a denoising method relying on a probabilistic description
of a given camera’s dark-current, as well as on an image prior appropriate for astronomical
images. Every pixel of the camera’s sensor is treated individually. In laboratory conditions,
we have shown that our method provides better results than most denoising methods that
are intended for use on natural images. On real astronomical images, we have shown that
our method provides visually more appealing results than other methods.
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Denoising with multi-layer perceptrons: BM3D [25] is one of the best currently existing
denoising methods. The method is engineered and does not rely on learning. Furthermore,
the method relies exclusively on internal knowledge: A given noisy image is denoised using
only knowledge gained from the noisy image itself. Knowledge concerning all other existing
images is ignored. Other recent methods rely on similar approaches. Is it also possible
to achieve excellent results using a method that lies on the opposite end of the spectrum
and relies heavily on learning instead of engineering and uses external knowledge instead of
internal knowledge? In Chapter 5 we present such a method. The method relies on plain
neural networks (also called multi-layer perceptrons, or MLPs) that are trained to denoise
image patches on a large dataset. Denoising an image is effected by applying a trained
MLP patch-wise. On average, this method significantly outperforms competing methods,
especially at high noise levels. Our method also achieves results that are superior to one
type of theoretical bound on some images, thereby proving by example that this type of
bound does not apply to all denoising algorithms. Compared to a second type of theoretical
bound, our method makes significant progress towards reaching the bounds. We have also
shown that our method performs particularly well in regions with complex textures, where
it was theoretically expected that the least amount of improvement is possible.

A limitation of our approach is that one MLP has to be trained for each noise level: An
MLP trained on one noise level does not perform well on other noise levels. However, MLPs
can be trained on other types of noise, by changing the training data. We have shown that
MLPs are able to perform well in JPEG artifact and Poisson noise removal, among others.
It is not clear if other denoising methods can always be easily adapted to handle different
kinds of noise.

Compared to other approaches, our method sometimes achieves worse results on images
with regular, repeating structures. This can be explained by the fact that the methods
outperforming ours on such images are specifically designed for images with regular, re-
peating structures. We made two attempts to improve the results our method achieves on
such images: The first relying on a block-matching procedure, with limited success, and the
second relying on combining the results of different denoising methods, using an MLP. The
second approach is effective and yields results that are almost always better than the best
of the inputs. This approach also achieves results that are still closer to reaching theoretical
bounds to image denoising.

Training and understanding MLPs: Common criticisms regarding MLPs include the fol-
lowing: (i) It is poorly understood which settings for the training procedure will lead to good
results and which to bad results, and (ii) MLPs are often seen as “black boxes” whose inter-
nal workings are unknown. We address these issues in Chapter 6. We have made a number
of observations regarding which factors are important for achieving good results with MLPs.
Using more training data always lead to better results. Using large input patches was also
important: Small input patches make the denoising problem ambiguous. Regarding the ar-
chitecture of the MLP, using more hidden units per hidden layer also always lead to better
results. However, there is an ideal number of hidden layers for a given problem and a given
number of hidden units per hidden layer. Going above the ideal number of hidden layers can
lead to catastrophic degradations in performance. Also, there is an ideal size for the output
patch. Going above this ideal size requires increasing the capacity of the MLP. Finally, we
have seen that reducing the learning rate in the late stages of the training procedure can
lead to important gains in performance. Training an MLP is a time-consuming process, even
on today’s GPUs, but denoising a single image can be performed in a reasonable amount of
time (compared to other denoising algorithms) on CPU.

We were able to make a number of observations regarding the operating principle of
MLPs trained for denoising. We saw that the inputs required to maximize the activation
of a hidden unit is usually similar to the output caused by the same hidden unit, meaning
that MLPs need to detect a feature in the noisy input in order to copy the same feature
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into the output. The noise is attenuated via saturation of the last tanh-layer. Interestingly,
this mode of operation gives rise to binary representations in the last hidden layer, lending
support to the regularization interpretation of denoising autoencoders proposed by Erhan
et al . [32].

Future research might attempt to use our insights in order to apply MLPs for other image
processing or vision tasks, such as image super-resolution, de-mosaicking, or optical flow.
A question that remains unanswered is whether a single MLP can be trained to perform
well on several noise levels. An additional difficulty would be to denoise an image in which
the noise level is unknown. A possible yet inconvenient solution would be to train several
MLPs, one for each possible noise level and to have a procedure (either an existing approach
or possibly another MLP) predict the noise level and therefore choose which MLP to use to
denoise the image. Yet another goal of future research would be to remove noise generated
by a real camera using MLPs, possibly incorporating de-mosaicking into the same task. Two
approaches are possible: In the first, one models the noise generated by a camera and then
simulates the noisy training patches, similarly to the current setup, but with more realistic
noise. In the second approach, one could obtain clean and noisy image pairs directly from
the camera, for example by changing the lighting conditions as well as the ISO-setting of
the camera. As the ISO-setting goes up, one expects higher noise. The second approach
has the advantage of treating all sources of noise, including ones that are difficult to model,
with the drawback that training data is more difficult to obtain.
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